دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Marco Guerrieri. Raffaele Mauro
سری: Springer Tracts in Civil Engineering
ISBN (شابک) : 3030607224, 9783030607227
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 196
[208]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب A Concise Introduction to Traffic Engineering: Theoretical Fundamentals and Case Studies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای مختصر بر مهندسی ترافیک: مبانی نظری و مطالعات موردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه ای از موضوعات اساسی مهندسی ترافیک را پوشش می دهد که برای طراحی و کنترل تاسیسات بزرگراه ها مفید است. درمان مختصر است، اما از بررسی جدیدترین و حیاتیترین جنبههای نظری که ریشه بسیاری از کاربردهای مهندسی بزرگراه هستند، مانند، برای مثال، جنبههای اساسی محاسبه قابلیت اطمینان جریان ترافیک بزرگراهها و کنترل خودکار سیستمهای بزرگراه، غافل نمیشود. به منظور آسان کردن این موضوعات برای پیگیری، چندین نمونه کار گویا از برنامه ها با جزئیات بسیار ارائه شده است. یک سبک شهودی و گفتمانی، به جای رسمی، در سراسر محتوا اتخاذ شده است. به این ترتیب، این کتاب دانش به روز و عملی را در مورد چندین جنبه از مهندسی ترافیک ارائه می دهد که مورد علاقه مخاطبان گسترده ای از جمله دانشجویان، محققان و همچنین برنامه ریزان حمل و نقل، متخصصان حمل و نقل عمومی، برنامه ریزان شهری و تصمیم گیرندگان است.
This book covers a selection of fundamental topics of traffic engineering useful for highways facilities design and control. The treatment is concise but it does not neglect to examine the most recent and crucial theoretical aspects which are at the root of numerous highway engineering applications, like, for instance, the essential aspects of highways traffic stream reliability calculation and automated highway systems control. In order to make these topics easy to follow, several illustrative worked examples of applications are provided in great detail. An intuitive and discursive, rather than formal, style has been adopted throughout the contents. As such, the book offers up-to-date and practical knowledge on several aspects of traffic engineering, which is of interest to a wide audience including students, researchers as well as transportation planners, public transport specialists, city planners and decision-makers.
Preface Contents List of Figures List of Tables 1 Macroscopic Variables and Fundamental Relationships of Traffic Flow Theory 1.1 Interrupted and Uninterrupted Traffic Flows 1.2 Inference of Macroscopic Flow Variables 1.2.1 Traffic Variables Referred to the Time Domain 1.2.2 Traffic Flow, Traffic Volume and Capacity 1.2.3 Peak Hour Factor 1.2.4 Estimating of Design Hourly Volume DHV 1.2.5 Traffic Variables Referred to the Space Domain 1.2.6 Fundamental Flow Relationship 1.2.7 Traffic Flow Stationarity References 2 Macroscopic Traffic Flow Models 2.1 Transportation Demand, Capacity and Flow 2.2 Relationship Between Macroscopic Traffic Flow Variables 2.3 Properties of the Mathematic Traffic Flow Models and Operational Flow Conditions 2.3.1 Single-Regime Models 2.3.2 Levels of Service 2.3.3 Other Characterizations of the Operational Traffic Conditions 2.4 Experimental Definition of a Traffic Flow Model 2.5 Deterministic Multi-regime Traffic Flow Models 2.6 Physical Interpretation of the Capacity 2.7 Hysteresis in Traffic Flows 2.8 Kerner’s Three-Phase Traffic Theory 2.9 Case Study: Service Levels According to Greenshields’ Model 2.10 Case Study: Calibration of Greenshields’ Flow Model 2.11 Case Study: Calibration of May’s Flow Model References 3 Continuity Flow Equation, Kinematic Waves and Shock Waves 3.1 Fluid Dynamic Analogy for the Traffic Flow 3.1.1 Deduction of the Continuity Equation 3.1.2 Boundary and Initial Conditions 3.1.3 Kinematic Waves 3.1.4 Perturbations of the Traffic Flow and Speed 3.2 The LWR Model and Shock Waves 3.2.1 Case Study: Queue Formation and Dissipation Due to Presence of a Heavy Vehicle on a Two-Lane Undivided Highway 3.2.2 Case Study: Estimation of the Effects of an Accident on the Flow in a Two-Lane Dual Carriageway Highway References 4 Microscopic Models and Traffic Instability 4.1 Microscopic Models: Car-Following Theory 4.2 Linear Model 4.3 Impulsive Variations of Vehicle Speeds: Traffic Instability and Stop (‘phantom Traffic Jams’) 4.3.1 Local Instability and Asymptotic Instability 4.4 Non-linear Model 4.5 Derivation of Macroscopic Models from the Microscopic Non-linear Model 4.6 Traffic Model Genealogy References 5 Fundamentals of Random and Traffic Processes 5.1 Traffic Processes 5.2 Counting Probability Distributions 5.2.1 General Criterion for Selecting the Appropriate Counting Probability Distribution 5.3 Probability Distribution for Time Headways 5.4 Speed Processes References 6 Traffic Management and Control Systems 6.1 Preliminary Considerations 6.2 Flow Reliability on Highways 6.2.1 Case Study: Assessment of the Reliability Laws from Traffic Surveys 6.3 The Ramp-Metering 6.3.1 System Analysis for an Isolated On-Ramp 6.3.2 System Analysis for On-Ramps and Off-Ramps 6.4 Hard Shoulder Running System 6.4.1 Capacity Estimation of Highways with HSR System 6.4.2 Case Study: Traffic Flow Parameters Estimation After HSR System Activation 6.5 Variable Speed Limits (VSL) 6.6 Automated Highway System (AHS) 6.6.1 Estimation of the Increase in Lane Capacity 6.7 C-ITS, C-Roads and Smart-Roads 6.7.1 C-ITS 6.7.2 C-Road Platform 6.7.3 Smart-Roads 6.8 Crash Frequency Estimation: The HSM Method 6.9 Models for Estimating Traffic Pollutant Emissions 6.9.1 The Macroscopic Model COPERT References 7 Interference Between Traffic Flows: The Gap Acceptance Theory 7.1 Estimation of the Critical Gap and Follow-Up Time 7.1.1 Estimation of the Average Critical Gap: Ashworth’s Method 7.1.2 Estimation of the Average Critical Gap: Miller’s Method 7.2 Characteristic Values of the Critical Gap and the Follow-Up Time 7.2.1 Tc and Tf for Unsignalized Intersections 7.2.2 Tc and Tf for Roundabouts 7.3 The Theoretical Capacity of Traffic Streams in an Unsignalized At-Grade Intersection References 8 Queue Formation: General Models 8.1 Queuing Systems: Variables and Basic Relationships 8.1.1 Little’s Law 8.2 Operating Conditions and Models for Waiting Systems 8.3 Probabilistic Models for Steady-State 8.4 Deterministic Solutions in Congestion 8.5 Heuristic Solutions for Steady and Non-steady States References 9 Unsignalized Intersections 9.1 Waiting Times and Delays in Unsignalized Intersections 9.2 The Levels of Service for Unsignalized At-Grade Intersections 9.3 Capacity, Delay and Queue at Three-Arm Intersections 9.3.1 Case Study: Delay Calculation in a T-Intersection 9.4 Capacity, Delays and Queues at Roundabout Intersections 9.4.1 Entry Capacities 9.4.2 Control Delays and Queues 9.4.3 Effect of the Pedestrian Flow on the Entry Capacity 9.4.4 Non Conventional Roundabouts: Turbo-Roundabouts 9.4.5 Case Study: Determination of Levels of Service in a Large-Sized Roundabout References 10 Signalized Intersections 10.1 The Cycle Length 10.2 Traffic Signal Control Type 10.3 Phasing at Signalized Intersection 10.4 Pedestrian Phases 10.5 Capacity Calculation 10.5.1 Criterion for Calculating the Delay-Minimising Cycle Time 10.6 Delay Calculation 10.7 Determination of Service Levels for Signalized Intersections 10.7.1 Case Study: LOS of a Signalized T-Intersection References Index