دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Simone Secchi
سری: UNITEXT, 141
ISBN (شابک) : 3031197372, 9783031197383
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 488
[480]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب A Circle-Line Study of Mathematical Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مطالعه خط دایره ای تحلیل ریاضی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Acknowledgements Contents Part I First Half of the Journey 1 An Appetizer of Propositional Logic 1.1 The Propositional Calculus 1.2 Quantifiers 2 Sets, Relations, Functions in a Naïve Way 2.1 Comments Reference 3 Numbers 3.1 The Axioms of R 3.2 Order Properties of R 3.3 Natural Numbers 3.4 Isomorphic Copies 3.5 Complex Numbers 3.6 Polar Representation of Complex Numbers 3.7 A Construction of the Real Numbers 3.8 Problems 3.9 Comments References 4 Elementary Cardinality 4.1 Countable and Uncountable Sets 4.2 The Schröder-Bernstein Theorem 4.3 Problems 4.4 Comments References 5 Distance, Topology and Sequences on the Set of Real Numbers 5.1 Sequences and Limits 5.2 A Few Fundamental Limits 5.3 Lower and Upper Limits 5.4 Problems 5.5 Comments Reference 6 Series 6.1 Convergence Tests for Positive Series 6.2 Euler's Number as the Sum of a Series 6.3 Alternating Series 6.3.1 Product of Series 6.4 Problems 6.5 Comments Reference 7 Limits: From Sequences to Functions of a Real Variable 7.1 Properties of Limits 7.2 Local Equivalence of Functions 7.3 Comments 8 Continuous Functions of a Real Variable 8.1 Continuity and Compactness 8.2 Intermediate Value Property 8.3 Continuous Invertible Functions 8.4 Problems 9 Derivatives and Differentiability 9.1 Rules of Differentiation, or the Algebra of Calculus 9.2 Mean Value Theorems 9.3 The Intermediate Property for Derivatives 9.4 Derivatives at End-Points 9.5 Derivatives of Derivatives 9.6 Convexity 9.7 Problems 9.8 Comments References 10 Riemann's Integral 10.1 Partitions and the Riemann Integral 10.2 Integrable Functions as Elements of a Vector Space 10.3 Classes of Integrable Functions 10.4 Antiderivatives and the Fundamental Theorem 10.5 Problems 10.6 Comments 11 Elementary Functions 11.1 Sequences and Series of Functions 11.2 Uniform Convergence 11.3 The Exponential Function 11.4 Sine and Cosine 11.5 Polynomial Approximation 11.6 A Continuous Non-differentiable Function 11.7 Asymptotic Estimates for the Factorial Function 11.8 Problems Part II Second Half of the Journey 12 Return to Set Theory 12.1 Kelley's System of Axioms 12.2 From Sets to N 12.3 A Summary of Kelley's Axioms 12.4 Set Theory According to J.D. Monk 12.5 ZF Axioms 12.6 From N to Z 12.7 From Z to Q 12.8 From Q to R 12.9 About the Uniqueness of R References 13 Neighbors Again: Topological Spaces 13.1 Topological Spaces 13.2 The Special Case of RN 13.3 Bases and Subbases 13.4 Subspaces 13.5 Connected Spaces 13.6 Nets and Convergence 13.7 Continuous Maps and Homeomorphisms 13.8 Product Spaces, Quotient Spaces, and Inadequacy of Sequences 13.9 Initial and Final Topologies 13.10 Compact Spaces 13.10.1 The Fundamental Theorem of Algebra 13.10.2 Local Compactness 13.11 Compactification of a Space 13.12 Filters and Convergence 13.13 Epilogue: The Limit of a Function 13.14 Separation and Existence of Continuous Extensions 13.15 Partitions of Unity and Paracompact Spaces 13.16 Function Spaces 13.17 Cubes and Metrizability 13.18 Problems 13.19 Comments References 14 Differentiating Again: Linearization in Normed Spaces 14.1 Normed Vector Spaces 14.2 Bounded Linear Operators 14.3 The Hahn-Banach Theorem 14.4 Baire's Theorem and Uniform Boundedness 14.5 The Open Mapping Theorem 14.6 Weak and Weak* Topologies 14.7 Isomorphisms 14.8 Continuous Multilinear Applications 14.9 Inner Product Spaces 14.10 Linearization in Normed Vector Spaces 14.11 Derivatives of Higher Order 14.12 Partial Derivatives 14.13 The Taylor Formula 14.14 The Inverse and the Implicit Function Theorems 14.14.1 Local Inversion 14.15 A Global Inverse Function Theorem 14.16 Critical and Almost Critical Points 14.17 Problems 14.18 Comments References 15 A Functional Approach to Lebesgue Integration Theory 15.1 The Riemann Integral in Higher Dimension 15.2 Elementary Integrals 15.3 Null and Full Sets 15.4 The Class L+ 15.5 The Class L of Integrable Functions 15.6 Taking Limits Under the Integral Sign 15.7 Measurable Functions and Measurable Sets 15.8 Integration Over Measurable Sets 15.9 The Concrete Lebesgue Integral 15.10 Integration on Product Spaces 15.11 Spaces of Integrable Functions 15.12 The Space L∞ 15.13 Changing Variables in Multiple Integrals 15.14 Comments References 16 Measures Before Integrals 16.1 General Measure Theory 16.2 Convergence Theorems 16.3 Complete Measures 16.4 Different Types of Convergence 16.5 Measure Theory on Product Spaces 16.6 Measure, Topology, and the Concrete Lebesgue Measure 16.6.1 The Concrete Lebesgue Measure 16.7 Mollifiers and Regularization 16.8 Compactness in Lebesgue Spaces 16.9 The Radon-Nykodim Theorem 16.10 A Strong Form of the Fundamental Theorem of Calculus 16.11 Problems 16.12 Comments References