دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Christopher Heil (auth.)
سری: Applied and Numerical Harmonic Analysis
ISBN (شابک) : 0817646868, 9780817646868
ناشر: Birkhäuser Basel
سال نشر: 2011
تعداد صفحات: 563
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
کلمات کلیدی مربوط به کتاب یک پایه نظریه پایه: نسخه توسعه یافته: چکیده تجزیه و تحلیل هارمونیک، ریاضیات کاربردی/روش های محاسباتی مهندسی، آنالیز تابعی، تحلیل فوریه، کاربردهای ریاضیات، پردازش سیگنال، تصویر و گفتار
در صورت تبدیل فایل کتاب A Basis Theory Primer: Expanded Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یک پایه نظریه پایه: نسخه توسعه یافته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
موضوع کلاسیک پایه ها در فضاهای باناخ در توسعه مدرن تحلیل هارمونیک کاربردی جان تازه ای به خود گرفته است. این کتاب درسی مقدمه ای مستقل بر نظریه انتزاعی مبانی و بسط قاب اضافی و استفاده از آن در تحلیل هارمونیک کاربردی و کلاسیک است.
چهار بخش متن خواننده را از تحلیل عملکردی کلاسیک و نظریه پایه به نظریه فرکانس زمان و موجک مدرن.
* بخش اول تجزیه و تحلیل عملکردی را توسعه می دهد که زیربنای بسیاری از مفاهیم ارائه شده در قسمت های بعدی متن است.
* بخش دوم. نظریه انتزاعی پایهها و قابها در فضاهای Banach و Hilbert را ارائه میکند، از جمله مباحث کلاسیک همگرایی، پایههای شودر، سیستمهای دو ضلعی، و پایههای بدون قید و شرط و به دنبال آن موضوعات جدیدتر پایهها و قابهای Riesz در فضاهای هیلبرت.
* بخش سوم مبانی و فریم ها را به تحلیل هارمونیک کاربردی، از جمله نظریه نمونه گیری، تحلیل گابور، و نظریه موجک مرتبط می کند.
* قسمت چهارم به تحلیل هارمونیک کلاسیک و سری فوریه می پردازد و بر نقش ایفای نقش توسط او تأکید می کند. مبانی، که دیدگاهی متفاوت با دیدگاهی است که در بیشتر بحثهای سری فوریه وجود دارد.
ویژگیهای کلیدی:
* ارائهای مستقل با شواهد واضح قابل دسترسی برای دانشجویان فارغالتحصیل، خالص و کاربردی ریاضیدانان و مهندسان علاقه مند به زیربنای ریاضی برنامه ها.
* تمرین های گسترده متن را تکمیل می کند و فرصت هایی را برای یادگیری با انجام دادن فراهم می کند و متن را برای دوره های تحصیلات تکمیلی مناسب می کند. نکات مربوط به تمرینات انتخاب شده در انتهای کتاب گنجانده شده است.
* راهنمای راه حل های جداگانه در صورت درخواست برای مربیان در دسترس است: www.birkhauser-science.com/978-0-8176-4686-8 /.
* هیچ متن دیگری ارتباط بین نظریه پایه کلاسیک و کاربردهای مدرن آن در تحلیل هارمونیک کاربردی را ایجاد نمی کند.
A Base Theory Primer برای این کار مناسب است. مطالعه مستقل یا به عنوان پایه ای برای دوره تحصیلات تکمیلی. مربیان بسته به سطح و پیشینه دانشآموزان خود، گزینههای مختلفی برای ساختن یک درس پیرامون متن دارند.
The classical subject of bases in Banach spaces has taken on a new life in the modern development of applied harmonic analysis. This textbook is a self-contained introduction to the abstract theory of bases and redundant frame expansions and its use in both applied and classical harmonic analysis.
The four parts of the text take the reader from classical functional analysis and basis theory to modern time-frequency and wavelet theory.
* Part I develops the functional analysis that underlies most of the concepts presented in the later parts of the text.
* Part II presents the abstract theory of bases and frames in Banach and Hilbert spaces, including the classical topics of convergence, Schauder bases, biorthogonal systems, and unconditional bases, followed by the more recent topics of Riesz bases and frames in Hilbert spaces.
* Part III relates bases and frames to applied harmonic analysis, including sampling theory, Gabor analysis, and wavelet theory.
* Part IV deals with classical harmonic analysis and Fourier series, emphasizing the role played by bases, which is a different viewpoint from that taken in most discussions of Fourier series.
Key features:
* Self-contained presentation with clear proofs accessible to graduate students, pure and applied mathematicians, and engineers interested in the mathematical underpinnings of applications.
* Extensive exercises complement the text and provide opportunities for learning-by-doing, making the text suitable for graduate-level courses; hints for selected exercises are included at the end of the book.
* A separate solutions manual is available for instructors upon request at: www.birkhauser-science.com/978-0-8176-4686-8/.
* No other text develops the ties between classical basis theory and its modern uses in applied harmonic analysis.
A Basis Theory Primer is suitable for independent study or as the basis for a graduate-level course. Instructors have several options for building a course around the text depending on the level and background of their students.
Front Matter....Pages i-xxv
Front Matter....Pages 1-1
Banach Spaces and Operator Theory....Pages 3-55
Functional Analysis....Pages 57-83
Front Matter....Pages 85-85
Unconditional Convergence of Series in Banach and Hilbert Spaces....Pages 87-123
Bases in Banach Spaces....Pages 125-151
Biorthogonality, Minimality, and More About Bases....Pages 153-176
Unconditional Bases in Banach Spaces....Pages 177-188
Bessel Sequences and Bases in Hilbert Spaces....Pages 189-202
Frames in Hilbert Spaces....Pages 203-246
Front Matter....Pages 247-247
The Fourier Transform on the Real Line....Pages 249-266
Sampling, Weighted Exponentials, and Translations....Pages 267-299
Gabor Bases and Frames....Pages 301-349
Wavelet Bases and Frames....Pages 351-425
Front Matter....Pages 427-427
Fourier Series....Pages 429-454
Basis Properties of Fourier Series....Pages 455-465
Front Matter....Pages 467-467
Lebesgue Measure and Integration....Pages 469-479
Compact and Hilbert–Schmidt Operators....Pages 481-490
Back Matter....Pages 527-536