ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب 5G and Satellite Spectrum, Standards, and Scale

دانلود کتاب طیف ، استانداردها و مقیاس 5G و ماهواره

5G and Satellite Spectrum, Standards, and Scale

مشخصات کتاب

5G and Satellite Spectrum, Standards, and Scale

دسته بندی: ارتباطات: ارتباطات از راه دور
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781630815028, 1630815020 
ناشر: Artech House 
سال نشر: 2018 
تعداد صفحات: 333 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 5 مگابایت 

قیمت کتاب (تومان) : 36,000



کلمات کلیدی مربوط به کتاب طیف ، استانداردها و مقیاس 5G و ماهواره: سیستم های ارتباط سیار، سیستم های ارتباطی بی سیم، سیستم های تلفن همراه -- استانداردها



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب 5G and Satellite Spectrum, Standards, and Scale به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طیف ، استانداردها و مقیاس 5G و ماهواره نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طیف ، استانداردها و مقیاس 5G و ماهواره

این منبع جدید نقش نوظهور مدار پایین زمین (LEO)، مدار زمین متوسط ​​(MEO) و ماهواره‌های زمین‌ایستا (GSO) را به عنوان گزینه‌ای برای تحویل بک‌هال و پهنای باند سیار و دسترسی ثابت شهری و روستایی در مناطق وسیع ارائه می‌کند. این کتاب بینشی در مورد استانداردهای شبکه غیر زمینی اخیراً ایجاد شده ارائه می دهد. خوانندگان می آموزند که کدام باندها باید در نسل بعدی دستگاه ها و شبکه های 5G و ماهواره ای پشتیبانی شوند و چگونه باندها مشخص می شوند. فاصله کانال، باندهای محافظ، FDD یا TDD، خارج از محدوده انتشار باند، و الزامات عملکرد باند مورد بحث قرار می گیرند. این کتاب به بحث در مورد مسائل تداخلی می‌پردازد که از تخصیص باند جدید از جمله تخصیص مشترک و چگونگی کاهش تداخل در و بین شبکه‌های 5G زمینی و ماهواره‌ای نسل بعدی. خوانندگان می آموزند که چگونه انتخاب های مدولاسیون بر مسائل همزیستی تأثیر می گذارد. این کتاب طراحی، عملکرد، هزینه و پیامدهای آزمایشی ادغام لایه‌های فیزیکی و MAC ماهواره‌ای نسل بعدی با استانداردهای نسخه 16 و 17 5G را مورد بحث قرار می‌دهد و بررسی می‌کند که چگونه این طیف و استانداردهای نوظهور به موارد استفاده IOT و MTC در بازارهای عمودی خاص نگاشت می‌شوند. خوانندگان می‌آموزند که چگونه آنتن‌های فعال و غیرفعال جدید در باند K و باند V و W (باند E) بر بودجه پیوند ماهواره‌ای و هزینه‌های تحویل ماهواره تأثیر می‌گذارند.


توضیحاتی درمورد کتاب به خارجی

This new resource presents the emerging role of Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geostationary satellites (GSO) as a delivery option for backhaul and wide area rural and urban mobile broadband and fixed access. The book offers insight into recently established Non Terrestrial Network standards. Readers learn which bands will need to be supported in next generation 5G and satellite devices and networks and how the bands will be characterized. Channel spacing, guard bands, FDD or TDD, out of band emission limits, and in band performance requirements are discussed. The book discusses what interference issues will arise from new band allocations including co-shared allocations and how interference will be mitigated in and between next generation terrestrial and satellite 5G networks. Readers learn how modulation choices will affect co-existence issues. The book discusses the design, performance, cost, and test implications of integrating next generation satellite physical and MAC layers with Release 16 and 17 5G standards and explores how these emerging spectrum and standards map on to IOT and MTC use cases in specific vertical markets. Readers learn how new active and passive antennas in the K bands and V and W band (E band) impact the satellite link budget and satellite delivery cost economics.



فهرست مطالب

Machine generated contents note: 1.1.Beginning with the Beach Ball --
1.2.Russia, China, and the United States: Red Rockets and Yellow Rockets --
1.3.Space Regulation and Deregulation --
1.4.The Beach in Bournemouth --
1.5.Satellites for Autonomous Transport Systems and the Internet of Moving Objects --
1.6.Satellites and 5G: A Natural Convergence? --
1.7.The NEWLEOs --
1.8.Regulatory and Competition Policy --
1.9.A Summary of Orbit Options and Performance Comparisons --
1.10.Satellite Technology Innovation: Fractional Beamwidth Antennas --
1.11.FDD Dual-Use, Dual-Band Spectrum with Fractional Beamwidth Antennas --
1.12.Present Launch Plans: Intelsat and Eutelsat --
1.13.People and Politics in the Satellite Industry --
1.14.Third Time Lucky for Hybrid Satellite Terrestrial Networks? --
1.15.Scale and Standards Bandwidth --
1.16.Channel Bandwidths and Passbands: Satellite and 5G Band Plan Implications --
1.17.Impact of NEWLEOs Deployments: The Progressive Pitch Sales Pitch Note continued: 1.18.Flat VSATs: An Alternative to Progressive Pitch as a Mechanism for Cosharing 5G and Satellite Spectrum --
1.19.Coexistence and Competition, Subsidies, and Universal Service Obligations --
1.20.U.S. Competition and Spectral Policy --
1.21.Satellites and Local Area Connectivity --
1.22.Summary --
References --
2.1.Why Spectrum Is Important --
2.2.5G Coexistence with Satellite TV and Other Satellite Systems --
2.3.Radar Frequency Band Designations --
2.4.5G Standards and Spectrum --
2.5.Existing LEO L-Band, Ku-Band, K-Band, and Ka-Band Allocations --
2.6.Benefits of Higher Frequencies/Shorter Wavelengths --
2.7.Spectrum: Why Ka-Band Is Useful --
2.8.The Impact of Standards on 5G Spectrum Requirements --
2.9.Multiplexing, Modulation, and Coexistence --
2.10.Regional Spectrum Policy --
2.11.5G and Satellite at UHF --
2.12.5G in Refarmed Spectrum Note continued: 2.13.The FCC, the ITU, and Sovereign Nation Regulation: Similarities and Differences Between Terrestrial and Nonterrestrial Networks --
2.14.Air to Ground for Public Protection and Disaster Relief: AT&T FirstNet, BT EE, and the Australian NBN as Examples of LTE and Longer-Term 5G Emergency Service Radio Networks --
2.15.GSO and NGSO Terminology --
2.16.Why Country and Regional Differences Are Important for Global Connectivity --
2.17.RF Power and Interference --
2.18.The Importance of Intersatellite Switching --
2.19.Landing Rights --
2.20.Interference Management --
2.21.Spectrum Access Rights --
2.22.NGSO to GSO Interference Mitigation --
2.23.FirstNet and the 2012 Spectrum Act --
2.24.Fiber Access and Wireless Access Rights --
2.25.Fixed Point-to-Point and Point-to-Multipoint Microwave Backhaul --
2.26.Legacy LEO and GSO Operator Spectrum --
2.27.V-Band and W-Band --
2.28.Summary --
References --
3.1.Latency and 5G Standards Note continued: 3.2.Other Factors Influencing Latency --
3.3.Latency, Distance, and Time --
3.4.Other Network Overheads and the OSI Model --
3.5.A Brief History of Time in Mobile Broadband Networks and the Impact on Latency --
3.6.The Cost of Accuracy --
3.7.Time, Latency, and Network Function Virtualization --
3.8.New Radio Specification and Related Latency Issues --
3.9.In-Band Backhaul --
3.10.5G and Satellite Channel Models --
3.10.1.3GPP TR 38.901 --
3.10.2.Line of Sight and Nonline of Sight --
3.10.3.Existing Models --
3.10.4.ITU Rain Models and Satellite Fade Calculations --
3.10.5.Oxygen Resonance Lines and the Very High Throughput V-Band Duplex Passbands --
3.10.6.Beyond Line of Sight --
3.11.Satellite Channel Models and Signal Latency --
3.12.Ongoing Satellite Standards and Related Study Items --
3.13.Propagation Delay and Propagation Loss as a Function of Elevation --
3.14.The Impact of NEWLEO Progressive Pitch on Latency and Link Budgets Note continued: 3.15.Satellites and Subcarrier Spacing --
3.16.Edge Computing, Above-the-Cloud Computing: The Dot.Space Delivery Model --
3.17.Summary --
References --
4.1.Introduction --
4.2.The Old Rocket Men --
4.2.1.Charles C. Clarke and the Role of Science Fiction --
4.2.2.Jules Verne and Herr Oberth --
4.2.3.Herr Oberth and Herr von Braun --
4.2.4.Robert Goddard and War of the Worlds --
4.3.Red Army Rockets --
4.4.The German Rocket Legacy --
4.5.The French and British Legacy --
4.6.Rockets in the Rest of the World --
4.7.Indian Space Research Organization as an Example of New Emerging Nation-State Capabilities --
4.8.Brazilian Rockets and Their Sovereign Satellite Program --
4.9.China Long March Missiles --
4.10.European Rockets --
4.11.Solid Fuel versus Liquid Fuel --
4.12.The Rocket Men and Their Rockets --
4.12.1.A New Generation of Space Entrepreneurs --
4.12.2.SpaceX Reusable Rockets and Other Innovations --
4.12.3.Price Lists and Payloads Note continued: 4.13.Transporting Rockets to the Launch Site and Payload Launch Stresses --
4.13.1.Musk Mission to Mars 2024 --
4.13.2.Mr. Bezos and Blue Origin --
4.13.3.My Rocket Is Bigger Than Your Rocket --
4.13.4.Mr. Branson and Virgin Galactic --
4.13.5.Small Rockets: The Ki-Wi Way --
4.13.6.Micro Spacecraft Launchers --
4.13.7.How Far Away Is Space? --
4.13.8.Near Space versus Deep Space --
4.13.9.How Long Does It Take to Get There? --
4.14.The Impact of Big Rocket Innovation on High-Count LEO Power Budgets, Capacity, Throughput, and Space Constellation Economics --
4.15.The Impact of Launch Reliability on Insurance Cost --
4.16.Summary --
References --
5.1.The Power of Power --
5.2.The Sun as a Source of Power --
5.2.1.Solar Panel Efficiency --
5.2.2.The International Space Station as an Example of Big Solar Panels in LEO --
5.2.3.Satellite Power Requirements --
5.2.4.The Power of Solar Power and What It Is Used For Note continued: 5.3.The Importance of Satellite Power Efficiency --
5.4.Electric Satellites Using Ion Propulsion Systems --
5.5.What Happens When the Sun Stops Shining? --
5.5.1.Thermoelectric Generation Using Radioisotope Power Sources for Communications Satellites? --
5.5.2.Production Costs for Americium and Plutonium --
5.5.3.How Long Do Radio-Isotope Thermoelectric Generators Last? --
5.5.4.Heat-to-Electric Conversion Using Stirling Radioisotope Generators --
5.6.Fission and Fusion --
5.7.Why Uranium Is Cheaper Than Plutonium --
5.8.Back to Russia and the United States and China --
5.9.Regulatory Issues of Launching Radioactive Material into Space --
5.10.Risks Associated with Launching Radioactive Material into Space --
5.11.Uranium in the News --
5.12.Radiation in Space: Photons or Neutrons, the Final Choice? --
5.13.CubeSat Innovation --
5.14.Quantum Computing Using Optical Space-Based Transceivers --
5.15.Smartphones in Space: A Megawatt, Very Mobile Network Note continued: 5.16.Other Power Sources in Space --
5.17.Satellites, Energy Efficiency, and Carbon Footprint --
5.18.Antenna Innovation --
5.19.5G and Satellite: The Nuclear Option --
5.20.Summary --
References --
6.1.The Impact of Antenna Innovation on Energy Costs in Terrestrial and Nonterrestrial Networks --
6.1.1.The Function of Antennas in Noise Limited Networks --
6.1.2.The Function of Antennas in Interference Limited Networks and Satellite and Terrestrial Coexistence --
6.1.3.Four Things Antennas Are Supposed to Do but Cannot Do at the Same Time --
6.2.Signals from Multiple Access Points, Multiple Base Stations, and/or Multiple Satellites --
6.3.Satellite Channel Models and Antennas: Standards as a Starting Point --
6.4.Back to Earth: 5G Antenna Trends --
6.4.1.5G Backhaul --
6.4.2.Self-Backhauling/In-Band Backhauling in 5G --
6.5.Innovation in Terrestrial 5G and Nonterrestrial Network Antennas --
6.5.1.Steerable Mechanical Antennas Note continued: 6.5.2.Electrically Steerable Antennas Using Conventional Components and Materials --
6.5.3.Electrically Steerable Antennas Using Metamaterials --
6.5.4.Metamaterial Antennas Combined with Electromagnetic Bandgap Material --
6.5.5.Active Conformal and Flat and Almost Flat Antennas --
6.5.6.Active and Passive Conformal Antennas --
6.5.7.Active Electronically Steered Array Antennas for Military Radar, SATCOM, and 5G Terrestrial and 5G Backhaul Applications --
6.6.4G and 5G Terrestrial AESA Systems: Flexible MIMO --
6.6.1.Automotive AESA --
6.6.2.Some Nokia Examples of 5G Flexible MIMO Antenna Arrays --
6.7.Beam Frequency Separation --
6.8.Plasma Antennas --
6.9.Flat VSATs and Their Role in LEO, MEO, and GEO Interference Mitigation --
6.10.Scaling Flat VSATs by Wavelength and Size --
6.11.Can Flat VSATs Be Produced at Low Cost? --
6.12.The 28-GHz VSAT Smartphone --
6.13.Multiband Flat and Conformal VSATs --
6.14.What Physical Layer Should Satellites Use? Note continued: 6.15.Band-Sharing 5G with High Throughput Gigabit Satellites at 12 GHz and 28 GHz, with Very High Throughput Terabit Satellites at 40/50 GHz and Superhigh Throughput Petabit Satellites in E-Band --
6.16.Flat VSATs and Wireless Wearables? --
6.17.The Role of Flat VSATs: Solving the Ground Gateway Interference Problem and Cost Problem --
6.18.Interconstellation Switching: GSO Satellites as the Mother Ship and the GSO as a Space-Based Server --
6.19.Upwardly Mobile Interconstellation Switching as a Way of Reducing the Number and Cost of Earth Stations --
6.20.Flat VSATs on Satellites --
6.21.Summary --
References --
7.1.Technical and Commercial Factors Determining and Driving Constellation Innovation --
7.2.The Point of Constellation Innovation --
7.3.A Reminder of the Constellation Options --
7.4.NEWLEGACYLEO --
7.5.NEWLEGACYGSO --
7.6.NEWLEO --
7.7.NEWLEGACYLEO --
7.7.1.Iridium --
7.7.2.Globalstar Note continued: 7.7.3.Device Availability for Hybrid Cellular/Satellite Constellations --
7.8.NEWLEO Angular Power Separation --
7.9.OneWeb Coexistence --
7.9.1.OneWeb Earth Stations --
7.9.2.OneWeb Progressive Pitch --
7.9.3.OneWeb Interference Models --
7.9.4.OneWeb Coexistence with GSO Systems --
7.10.Angular Power Separation and Active Electronically Steerable Antenna Arrays --
7.11.Interference Calculations and Other Arguments --
7.12.Asia Broadcast Satellite Case Study --
7.13.The Answer: Mixed Constellations Including 5G --
7.14.Up Before Down Constellations: Hubble Telescope and International Space Station as Prior Examples --
7.15.TRDS Protection Ratios --
7.16.Ground-Based Antenna Innovation (Passive and Active Flat VSATs) as the Enabler --
7.17.GSO HTS and VHTS Constellation Innovation --
7.18.The Global GSOs --
7.19.Other Global GSOs --
7.20.The Regional SATs --
7.21.The Sovereign SATs --
7.22.Very High Throughput Constellations --
7.23.Autonomous CubeSats Note continued: 7.24.Space-Sensing Constellations: Square Satellites That Look Around --
7.25.GNSS Satellites --
7.26.Quazi Zenith Constellations --
7.27.Orbital Debris --
7.28.Subspace High Altitude Platforms --
7.29.Lighter-Than-Air Platforms --
7.30.Summary --
References --
8.1.Aviation Manufacturing: A Fairy Tale --
8.2.Satellite Manufacturing: A Similar Story? --
8.3.The Automotive Industry as a Source of Satellite Manufacturing Innovation --
8.3.1.Mr. Ford and Mr. Musk --
8.3.2.Production Innovation for 5G Smartphones: Why Scale Is Important for Performance --
8.3.3.Materials and Manufacturing Innovation in the 5G Supply Chain --
8.3.4.Materials and Manufacturing Innovation in the Rocket Industry --
8.3.5.Meanwhile, Back at the Battery Farm --
8.3.6.Automotive Enterprise Value: Mr. Musk as a Modern Marconi --
8.4.Automotive Radar Supply Chain as a Source of Satellite and 5G Antenna Manufacturing Innovation --
8.5.Supply Chain Comparisons Note continued: 8.6.Why Scale Is Important --
8.7.Production and Manufacturing Challenges of Centimeter-Band and Millimeter-Band Smartphones --
8.8.Wi-Fi, Bluetooth, or Subgigahertz IoT Connectivity as an Option --
8.9.Access Points and Base Station Hardware --
8.10.Server and Router Hardware Manufacturing Innovation --
8.11.Summary --
References --
9.1.Introduction --
9.2.The Problem That the Satellite Industry Needs to Solve: A Lack of Scale --
9.3.The Double Dozen Rule --
9.4.National, Regional, and Global Operator and National, Regional, or Global Scale --
9.5.The Impact of Standards on Commercial Innovation --
9.6.Do Mobile Operators Have Any Problems They Need Solving? --
9.6.1.Backhaul Costs, Public Safety, and Deep Rural and Desert Coverage --
9.6.2.The Deep Rural Network, Device Cost Issue, and Satellite Solution --
9.6.3.Low-Cost IoT: Can Satellite Deliver? --
9.7.The CondoSat as an Agency of Change Note continued: 9.8.Terrestrial Trash Bin Wi-Fi: Competition or a New Target Market --
9.9.Energy and Carbon Targets: Can Satellite Deliver? --
9.10.Above the Cloud Computing: Alibaba and Tencent as the Future? --
9.11.Trains, Boats, and Planes --
9.12.Mobile Automotive Mobile Networks --
9.13.Satellite and 802.11p Automotive V2V and V2X --
9.14.Subgigahertz CubeSat as an Alternative Delivery Option Using Sub- 1-GHz Spectrum --
9.15.Space-Based White Space --
9.16.Space and HAPS-Based Wi-Fi --
9.17.The Smartphone as the Default Common Denominator for B2B and Consumer Mass Markets --
9.18.The 5G Smartphone as the Gateway to Satellite Industry Consumer Market Scale --
9.19.Wireless Wearables --
9.20.Back to the Beach in Bournemouth --
9.21.Getting 28-GHz Satellite Connectivity into 5G Smart Phones: The Practicalities --
9.22.Getting C-Band (and Extended C-Band), S-Band, L-Band, and Subgigahertz Satellite Connectivity into Smartphones Note continued: 9.23.Standards as a Critical Enabler --
References --
10.1.Standards as a Barrier to 5G Satellite Smartphones --
10.2.Standards as an Enabler of 5G Satellite Smartphones --
10.3.The Use and Abuse of the Standards Process: Internal Tension Points --
10.4.5G and Satellite 3GPP Release 15 Work Items --
10.5.Parallel Guided Media Standards --
10.6.5G, Satellite, and Fixed Wireless Access --
10.7.5G, Satellite, and C-Band Satellite TV Standards --
10.8.5G and Satellite Integration with the Wi-Fi Standards Process --
10.8.1.SAT-FI --
10.8.2.High Data Rate Wi-Fi, Cat 18 and Cat 19 LTE, and 50X 5G --
10.8.3.LTE and Wi-Fi Link Aggregation --
10.9.5G, Satellite, and Bluetooth --
10.10.How Satellites Can Help Meet Performance Targets Specified in the 5G Standards Documents --
10.10.1.eMBB and Satellite --
10.10.2.Satellites and 5G Spectral Efficiency --
10.10.3.Satellites and 5G Deep Rural IoT --
10.10.4.Satellites and Highly Mobile Users and IoT Devices Note continued: 10.10.5.Satellites and Large Cell Low Mobility Cells --
10.10.6.Satellites and Massive Machine-Type Communications: VHTS Flat VSATs --
10.10.7.Satellites and Ultrareliable Low-Latency Communication --
10.10.8.Energy Efficiency and Carbon Footprint --
10.10.9.5G and Satellite Beam Forming --
10.11.Who Owns the Standards\' Value? --
10.12.Satellites and Automotive Connectivity --
10.13.The Satellite Industry and Automotive Radar --
10.14.Satellites and 5G Data Density --
10.15.Satellite and 5G Standards: Modulation, Coding, and Coexistence --
10.16.CATS and SATs --
10.17.Satellite Backhaul for 5G --
10.18.Network Interface Standards and RF Over Fiber --
10.19.Standards and Spectrum: The HTS, VHTS, and S-VHTS Satellite Service Offer --
10.20.5G and Satellite Spectrum Cosharing --
10.21.Implications of 5G and Satellite Band-Sharing on Regulatory and Competition Policy --
10.22.Physical Layer Compatibility --
10.23.Passive Flat VSAT Standards Note continued: 10.24.Active Flat VSAT Standards --
10.25.In-Band 5G Backhaul and Satellite --
10.26.ESIM and BSIM Standards: Model T Connectivity --
10.27.Specifying Network Power Efficiency and Carbon Footprints --
10.28.CAT SAT Smartphone and Wearable SAT Standards: Tencent Telefonica and Other Unexpected Outcomes --
10.29.Summary --
References --
11.1.A Financial Overview of the Telecom Industry and Its Associated Supply Chain --
11.2.Lessons to Be Learned from Past Financial Failures: Chapter 11 as a Revolving Door --
11.3.The Size of the Telecoms Industry --
11.4.The SATs and Other Entities --
11.5.The Satellite Supply Chain --
11.6.Financial Comparisons --
11.7.The GAFASATs and Automotive Majors --
11.8.The Huawei Factor --
11.9.The Defense Sector Supply Chain --
11.10.The Satellite Supply Chain --
11.10.The LEOs --
11.10.Summary --
References --
12.1.Introduction --
12.2.Spectrum Touch Points and Tension Points Note continued: 12.3.The Impact of Antenna Innovation on Spectrum Cosharing in Ku-Band, K-Band, and Ka-Band --
12.3.1.Active Electronically Steerable Array Antennas (Active Flat VSATs) --
12.3.2.Passive Fixed Beamwidth Flat or Conformal Antennas (Passive Flat VSATs) --
12.4.What This Means for the 26 GHz versus 28 GHz Debate --
12.5.The Quid Pro Quo: Satellite in the Sub-3.8-GHz 5G Refarming Bands --
12.6.Surely the Satellite Link Budget Is Insufficient for Most Terrestrial Applications? --
12.7.The Satellite Vertical Model --
12.8.Vertical Coverage for Vertical Markets --
12.9.The Terrestrial Horizontal Mode: Horizontal Coverage for Horizontal Markets --
12.10.Horizontal versus Vertical Value --
12.11.Summary: Around the World in 80 Ways --
References.




نظرات کاربران