دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Kishor Kumar Sadasivuni (editor)
سری:
ISBN (شابک) : 0128168056, 9780128168059
ناشر: Elsevier
سال نشر: 2019
تعداد صفحات: 575
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 54 مگابایت
در صورت تبدیل فایل کتاب 3D and 4D Printing of Polymer Nanocomposite Materials: Processes, Applications, and Challenges به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب چاپ سه بعدی و چهار بعدی مواد نانوکامپوزیت پلیمری: فرآیندها، کاربردها و چالش ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
چاپ سه بعدی و چهار بعدی مواد پلیمری نانوکامپوزیت: پردازش، کاربردها و چالش ها فرایندهای پیشرفته چاپ سه بعدی و چهار بعدی و آخرین پیشرفت ها در مواد جدید چاپ مبتنی بر پلیمر را پوشش می دهد، بنابراین خواننده را قادر به درک و از مزایای این فناوری پیشگامانه بهره مند شوید. این کتاب فرآیندها، انتخاب مواد و مسائل مربوط به قابلیت چاپ را به همراه بخش هایی در مورد تهیه مواد کامپوزیت پلیمری برای چاپ سه بعدی و چهار بعدی ارائه می کند. در سراسر کتاب، تکنیک های چاپ پیشرفته پوشش داده شده و به طور کامل مورد بحث قرار گرفته است، از جمله مدل سازی رسوب ذوب شده (FDM)، تف جوشی لیزری انتخابی (SLS)، ذوب لیزری انتخابی (SLM)، ذوب پرتو الکترونی (EBM)، چاپ جوهرافشان 3 بعدی (3DP)، استریولیتوگرافی (SLA) و ترسیم سه بعدی.
در نهایت، حوزههای کاربردی اصلی، از جمله کاربردهای الکترونیک، هوافضا، ساختوساز و زیستپزشکی، با اطلاعات دقیق در مورد طراحی، ساخت و روشهای پردازش مورد نیاز در هر مورد مورد بحث قرار میگیرند.
3D and 4D Printing of Polymer Nanocomposite Materials: Processing, Applications, and Challenges covers advanced 3D and 4D printing processes and the latest developments in novel polymer-based printing materials, thus enabling the reader to understand and benefit from the advantages of this groundbreaking technology. The book presents processes, materials selection, and printability issues, along with sections on the preparation of polymer composite materials for 3D and 4D printing. Across the book, advanced printing techniques are covered and discussed thoroughly, including fused deposition modeling (FDM), selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), inkjet 3D printing (3DP), stereolithography (SLA), and 3D plotting.
Finally, major applications areas are discussed, including electronic, aerospace, construction and biomedical applications, with detailed information on the design, fabrication and processing methods required in each case.
Front Matter Copyright Contributors Preface Acknowledgment Introduction to 3D and 4D printing technology: State of the art and recent trends Introduction Designing perspective and effect of processing parameters in 3D and 4D printing Challenging prospects Designing challenges Manufacturing challenges Qualification and validation 3D printing technology Feeding mechanisms in 3D printing Binder jetting Material jetting Direct energy deposition Powder bed fusion Light photopolymerization Extrusion Sheet lamination Classification of materials used in 3D and 4D printing Powder materials Wire filament materials Printable waxes Liquid materials 3D printer software and hardware Evolution of 4D printing technology Printers for 4D printing Recent trends in 3D printing and 4D printing Conclusions References 3D and 4D printing of nanomaterials: Processing considerations for reliable printed nanocomposites Introduction Nanocomposites Definition of nanocomposite Benefits/advantages of nanocomposites Additive manufacturing AM categories Physical phenomena in AM Chapter organization AM and governing physical phenomena Printing methods commonly used in nanocomposite AM Material extrusion Fabrication method description Governing physical phenomena Vat photopolymerization Fabrication method description Governing physical phenomena Powder bed fusion Fabrication method description Governing physical phenomena Nanocomposites effects on processing parameters Material properties in AM processing Influence of nanoparticles on polymer viscosity Effect of nanoparticles on polymer thermal properties, vitrification and crystallization Influence of nanoparticles on interlayer adhesion Effect of nanoparticles on polymer-light interactions Future outlook and needs for future research References Polymer-based conductive composites for 3D and 4D printing of electrical circuits Introduction Background The case for FDM-compatible conductive polymer composites (CPCs) What is a four-dimensional (4D) printable material? What is an FDM-compatible conductive polymer composite (CPC) filament? Conductive polymer composites with carbon-based fillers Formulation Characterization Microscopy Current-voltage (I-V) measurements Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) Stress tests-Ultraviolet, electrical, thermal Conductive polymer composites with metal-based fillers Preparation of conductive metal filler PCL+Cu-Ag nanowires PVB+Ag flakes Nylon-6/PE+Ni/Sn95Ag4Cu1 low-melting-point alloy Performance before and after printing PCL+Cu-Ag nanowires PVB+Ag flakes Nylon-6/PE+Ni/Sn95Ag4Cu1 low-melting-point alloy Applications 2D circuit tracks 3D circuit tracks 3D chassis with 2D conductive tracks 3D circuit elements Inductor Capacitor Sensors Temperature sensor Wearable glove with embedded flex sensor Capacitive buttons Challenges in printing CPCs Summary and perspective References 3D and 4D printing of pH-responsive and functional polymers and their composites Introduction Processing techniques Stereolithography Selective laser sintering Inkjet and powder-inkjet printing Extrusion 3D printing Fused deposition modeling Liquid deposition modeling 4D printing Single-material 4D printing Multiple-material 4D printing Functional materials in 3D and 4D printing Printing of electroactive and electromagnetically active materials Temperature-responsive functional materials Shape memory polymers Temperature-responsive polymer composite hydrogels pH-responsive polymers Light-responsive materials Piezoelectric functional materials Conclusions References Additive manufacturing (AM) of medical devices and scaffolds for tissue engineering based on 3D and 4D printing Introduction Scaffolds for tissue engineering Scaffold architecture Mechanical properties Biomaterials for tissue engineering and scaffold fabrication Natural polymers Synthetic polymers Bioceramics Metal-based scaffold materials Biocomposites Direct 3D-printing processes Stereolithography (SLA) Microextrusion-based 3D bioprinting Inkjet based 3D-printing Fused deposition modeling (FDM) Selective laser sintering (SLS) Indirect 3D-printing processes 4D printing for biomedical applications Soft active shape memory polymers Hydrogel-based 4D printing Factors affecting 4D printing Effect of temperature Effect of water or solvent Conclusions References Shape memory polymer blends and composites for 3D and 4D printing applications Introduction-Historical overview The underlying mechanism of the SME Main trends in the use of SMP for 3DP and 4DP Technologies of 3DP applied to SMP Classification of SMP, blends, and composites used in 3D and 4DP SMP and blends in SLA SMP and blends in fused deposition modeling/fused filament fabrication Conclusions and outlook References Further reading Fabrication of 3D and 4D polymer micro- and nanostructures based on electrospinning Introduction Nanotechnology for advanced materials 3D polymer micro- and nanostructures Background Additive manufacturing Electrospinning process Jet initiation and elongation Growth of bending instability and further elongation Methods to fabricate 3D electrospun polymer micro- and nanostructures Multilayer electrospinning Stacking Application of 3D collecting template Freeze drying into shapes Self-assembly 3D and 4D electrospinning technique Basic principles Apparatus x-y-z axis motion control 3D/4D electrospinning nozzle Solution control High-voltage control Ambient control 3D and 4D electrospinning process Digital 3D model design G-code generation Material preparation Printing 3D nanofibrous materials Finishing Characterization Optical microscopy Scanning electron microscopy Surface area measurements Processing parameters Solution parameters Applied voltage Working distance Solution flow rate Nozzle moving speed Temperature and humidity Potential applications Biomedical applications Tissue engineering and drug development 4D nanomaterials Energy applications Batteries Fuel cells Supercapacitors Catalysis Filtration Food industry Cosmetics Sound insulators Summary Challenges and future perspectives References Multifunctional polymer composites for 3D and 4D printing Introduction Multifunctional structures Piezoelectric structures Battery fiber structures PV structures Flexible electronics structures 4D structures Conclusions References Graphene and graphene oxide-reinforced 3D and 4D printable composites Introduction A brief introduction to graphene Emerging graphene 3DP Feasible techniques for graphene 3DP Direct ink writing Additive strategies Hydrogen bond Electrostatic interaction Reactive inks Additive rheology effects Additive-free approaches Highly concentrated GO inks Process assistance Fused deposition modeling Light-based 3DP The properties of 3D-printed graphene-based materials Applications of 3D-printed graphene Energy storage applications Solar energy High temperature application Sensoring Prospect and outlook References Further reading 3D and 4D printing of polymer/CNTs-based conductive composites Introduction Traditional approaches Solution processing of CNTs and polymer Melting the polymer Milling 3D printing 3D printing techniques FDM Stereolithography (SLA) PolyJet Powder bed and inkjet head 3D printing (3DP) Selective laser sintering (SLS) Direct write (DW) Inkjet printing Aerosol jet printing (AJP) Tailoring the interface of polymer/CNTs Applications Electrical conductivity and transparency Electromagnetic shielding effect Electronic devices Tissue engineering 4D printing Limitations and future research Material innovation Polymer-CNT interfacial properties Material homogeneity 3D equipment and printability Conclusion References Further reading Medical and biomedical applications of 3D and 4D printed polymer nanocomposites Introduction 3D and 4D printed polymer nanocomposites for biomedical applications 3D printing technologies Nanofillers classification Applications Nanocomposites for physical properties tuning of 3D printed scaffolds Nanofibrillated cellulose (NFC) Nanosilica/nanoclay Ferroferric oxide (Fe3O4) Nanohydroxyapatite (nHA) Carbon-based nanoparticles Nanocomposites for 3D printing of active devices Nanocomposites for 3D printing of diagnostic and therapeutic tools Challenges and future perspectives Conclusion References Further reading Carbon black-reinforced 3D and 4D printable conductive polymer composites Introduction Fabrication and characteristic Conductive and physical mechanism Applications of 3D and 4D printable CB composites Strain sensor Soft equivalent spring buffer and electrode for energy harvesting Challenges and future perspectives Conclusions References Photoactive resin formulations and composites for optical 3D and 4D printing of functional materials and devices Introduction Photopolymerization-based additive manufacturing (AM) technologies Fundamentals of photopolymerization-based AM Penetration depth, critical exposure, and cure depth Photopolymerization kinetics Photopolymerization kinetic models Characterization techniques for monitoring SLA kinetics Recoating mechanisms Free surface Constrained surface Photoresin formulations Additives Photoinitiators Absorbers Composite formulations Applications 4D printing Sensors, actuators, and transducers Energy applications Biomedical applications Conclusion References Hydrogels and hydrogel composites for 3D and 4D printing applications Introduction 3D printing of hydrogels and hydrogel composites Nozzle-based 3D printing Inkjet printer-based 3D printing Laser-based 3D printing Hydrogels and hydrogel composites for 3D printing Hydrogels derived from natural polymers Collagen Gelatin Alginate κ-Carrageenans Gellan gum Chitosan Oppositely charged hydrogels Interfacial bonding Hydrogels from synthetic polymers Poly (ethylene glycol) Poly (vinyl alcohol) Pluronics Hydrogel composites Double network hydrogels Particle-reinforced hydrogels Fiber-reinforced hydrogels Applications of 3D printed hydrogel and hydrogel composites Tissue engineering Multifunctional devices 4D printing of hydrogels and hydrogel composites Conclusion References Further reading 3D and 4D printing of biomaterials and biocomposites, bioinspired composites, and related transformers Introduction Deposition techniques for 3D printing of biomaterials Stereolithography Extrusion printing Inkjet printing Selective laser sintering/melting Materials for 3D printing of biomaterials Hard matter Soft matter Biologically derived materials Composite materials Applications of 3D printed biomaterials Tissue engineering Medicine and drug delivery Dentistry 4D printing and its applications for biomaterials Techniques in 4D printing Materials and applications of biomaterials in 4D Conclusions and future perspectives 3D printed biomaterials 4D printed biomaterials References 3D and 4D printed polymer composites for electronic applications Introduction Why 3D/4D printing composites for electronic applications? Why 3D/4D printing? Why composites for electronic applications? 3D and 4D printable electrically conductive composites Percolation theory in conductive composites Processes of 3D printing of conductive composites Extrusion of conductive composites Inkjet printing of conductive composites SLA of conductive composites SLS of conductive composites Role of conductive composites in 4D printing Applications of 3D and 4D printable conductive composites Printed electrode applications Printed sensor applications 3D and 4D printable dielectric composites Work principle of dielectric composites Dielectric elastomer composites Highly insulating composites Processes of 3D printing of dielectric composites Extrusion of dielectric composites Inkjet printing of dielectric composites SLA of dielectric composites SLS of dielectric composites Applications of 3D and 4D printable dielectric composites RF-responsive structures Electrical insulators Dielectric elastomer actuators Conclusion References Further reading Fundamentals and applications of 3D and 4D printing of polymers: Challenges in polymer processing and prospec ... Introduction Fundamentals of 3D printing processes VAT photopolymerization Stereolithography Digital light processing Continuous liquid interface production Multiphoton polymerization Powder bed fusion Selective laser sintering Material extrusion Fused deposition modeling Binder jetting Inkjet printing Aerosol jet printing Challenges in polymer processing Mechanical properties Resolution Manufacturing speed Multimaterial printing Biocompatibility Applications of 3D and 4D printing of polymers Polymer nanocomposites in 3D and 4D printing Fiber-reinforced polymer nanocomposites Nanoparticle-reinforced polymer nanocomposites Prospects of future research Conclusions References Index A B C D E F G H I L M N P R S T U V W