ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب 3D and 4D Printing of Polymer Nanocomposite Materials: Processes, Applications, and Challenges

دانلود کتاب چاپ سه بعدی و چهار بعدی مواد نانوکامپوزیت پلیمری: فرآیندها، کاربردها و چالش ها

3D and 4D Printing of Polymer Nanocomposite Materials: Processes, Applications, and Challenges

مشخصات کتاب

3D and 4D Printing of Polymer Nanocomposite Materials: Processes, Applications, and Challenges

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0128168056, 9780128168059 
ناشر: Elsevier 
سال نشر: 2019 
تعداد صفحات: 575 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 54 مگابایت 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب 3D and 4D Printing of Polymer Nanocomposite Materials: Processes, Applications, and Challenges به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب چاپ سه بعدی و چهار بعدی مواد نانوکامپوزیت پلیمری: فرآیندها، کاربردها و چالش ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب چاپ سه بعدی و چهار بعدی مواد نانوکامپوزیت پلیمری: فرآیندها، کاربردها و چالش ها



چاپ سه بعدی و چهار بعدی مواد پلیمری نانوکامپوزیت: پردازش، کاربردها و چالش ها فرایندهای پیشرفته چاپ سه بعدی و چهار بعدی و آخرین پیشرفت ها در مواد جدید چاپ مبتنی بر پلیمر را پوشش می دهد، بنابراین خواننده را قادر به درک و از مزایای این فناوری پیشگامانه بهره مند شوید. این کتاب فرآیندها، انتخاب مواد و مسائل مربوط به قابلیت چاپ را به همراه بخش هایی در مورد تهیه مواد کامپوزیت پلیمری برای چاپ سه بعدی و چهار بعدی ارائه می کند. در سراسر کتاب، تکنیک های چاپ پیشرفته پوشش داده شده و به طور کامل مورد بحث قرار گرفته است، از جمله مدل سازی رسوب ذوب شده (FDM)، تف جوشی لیزری انتخابی (SLS)، ذوب لیزری انتخابی (SLM)، ذوب پرتو الکترونی (EBM)، چاپ جوهرافشان 3 بعدی (3DP)، استریولیتوگرافی (SLA) و ترسیم سه بعدی.

در نهایت، حوزه‌های کاربردی اصلی، از جمله کاربردهای الکترونیک، هوافضا، ساخت‌وساز و زیست‌پزشکی، با اطلاعات دقیق در مورد طراحی، ساخت و روش‌های پردازش مورد نیاز در هر مورد مورد بحث قرار می‌گیرند.


توضیحاتی درمورد کتاب به خارجی

3D and 4D Printing of Polymer Nanocomposite Materials: Processing, Applications, and Challenges covers advanced 3D and 4D printing processes and the latest developments in novel polymer-based printing materials, thus enabling the reader to understand and benefit from the advantages of this groundbreaking technology. The book presents processes, materials selection, and printability issues, along with sections on the preparation of polymer composite materials for 3D and 4D printing. Across the book, advanced printing techniques are covered and discussed thoroughly, including fused deposition modeling (FDM), selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), inkjet 3D printing (3DP), stereolithography (SLA), and 3D plotting.

Finally, major applications areas are discussed, including electronic, aerospace, construction and biomedical applications, with detailed information on the design, fabrication and processing methods required in each case.



فهرست مطالب

Front Matter
Copyright
Contributors
Preface
Acknowledgment
Introduction to 3D and 4D printing technology: State of the art and recent trends
	Introduction
	Designing perspective and effect of processing parameters in 3D and 4D printing
		Challenging prospects
			Designing challenges
			Manufacturing challenges
			Qualification and validation
	3D printing technology
		Feeding mechanisms in 3D printing
			Binder jetting
			Material jetting
			Direct energy deposition
			Powder bed fusion
			Light photopolymerization
			Extrusion
			Sheet lamination
	Classification of materials used in 3D and 4D printing
		Powder materials
		Wire filament materials
		Printable waxes
		Liquid materials
	3D printer software and hardware
	Evolution of 4D printing technology
	Printers for 4D printing
	Recent trends in 3D printing and 4D printing
	Conclusions
	References
3D and 4D printing of nanomaterials: Processing considerations for reliable printed nanocomposites
	Introduction
		Nanocomposites
			Definition of nanocomposite
			Benefits/advantages of nanocomposites
		Additive manufacturing
			AM categories
			Physical phenomena in AM
		Chapter organization
	AM and governing physical phenomena
		Printing methods commonly used in nanocomposite AM
		Material extrusion
			Fabrication method description
			Governing physical phenomena
		Vat photopolymerization
			Fabrication method description
			Governing physical phenomena
		Powder bed fusion
			Fabrication method description
			Governing physical phenomena
	Nanocomposites effects on processing parameters
		Material properties in AM processing
		Influence of nanoparticles on polymer viscosity
		Effect of nanoparticles on polymer thermal properties, vitrification and crystallization
		Influence of nanoparticles on interlayer adhesion
		Effect of nanoparticles on polymer-light interactions
	Future outlook and needs for future research
	References
Polymer-based conductive composites for 3D and 4D printing of electrical circuits
	Introduction
		Background
		The case for FDM-compatible conductive polymer composites (CPCs)
		What is a four-dimensional (4D) printable material?
		What is an FDM-compatible conductive polymer composite (CPC) filament?
	Conductive polymer composites with carbon-based fillers
		Formulation
		Characterization
			Microscopy
			Current-voltage (I-V) measurements
			Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)
			Stress tests-Ultraviolet, electrical, thermal
	Conductive polymer composites with metal-based fillers
		Preparation of conductive metal filler
			PCL+Cu-Ag nanowires
			PVB+Ag flakes
			Nylon-6/PE+Ni/Sn95Ag4Cu1 low-melting-point alloy
		Performance before and after printing
			PCL+Cu-Ag nanowires
			PVB+Ag flakes
			Nylon-6/PE+Ni/Sn95Ag4Cu1 low-melting-point alloy
	Applications
		2D circuit tracks
		3D circuit tracks
		3D chassis with 2D conductive tracks
		3D circuit elements
			Inductor
			Capacitor
		Sensors
			Temperature sensor
			Wearable glove with embedded flex sensor
			Capacitive buttons
		Challenges in printing CPCs
	Summary and perspective
	References
3D and 4D printing of pH-responsive and functional polymers and their composites
	Introduction
	Processing techniques
		Stereolithography
		Selective laser sintering
		Inkjet and powder-inkjet printing
		Extrusion 3D printing
			Fused deposition modeling
			Liquid deposition modeling
		4D printing
			Single-material 4D printing
			Multiple-material 4D printing
	Functional materials in 3D and 4D printing
		Printing of electroactive and electromagnetically active materials
		Temperature-responsive functional materials
			Shape memory polymers
			Temperature-responsive polymer composite hydrogels
		pH-responsive polymers
		Light-responsive materials
		Piezoelectric functional materials
	Conclusions
	References
Additive manufacturing (AM) of medical devices and scaffolds for tissue engineering based on 3D and 4D printing
	Introduction
	Scaffolds for tissue engineering
		Scaffold architecture
		Mechanical properties
	Biomaterials for tissue engineering and scaffold fabrication
		Natural polymers
		Synthetic polymers
		Bioceramics
		Metal-based scaffold materials
		Biocomposites
	Direct 3D-printing processes
		Stereolithography (SLA)
		Microextrusion-based 3D bioprinting
		Inkjet based 3D-printing
		Fused deposition modeling (FDM)
		Selective laser sintering (SLS)
	Indirect 3D-printing processes
	4D printing for biomedical applications
		Soft active shape memory polymers
		Hydrogel-based 4D printing
	Factors affecting 4D printing
		Effect of temperature
		Effect of water or solvent
	Conclusions
	References
Shape memory polymer blends and composites for 3D and 4D printing applications
	Introduction-Historical overview
	The underlying mechanism of the SME
	Main trends in the use of SMP for 3DP and 4DP
	Technologies of 3DP applied to SMP
	Classification of SMP, blends, and composites used in 3D and 4DP
		SMP and blends in SLA
		SMP and blends in fused deposition modeling/fused filament fabrication
	Conclusions and outlook
	References
	Further reading
Fabrication of 3D and 4D polymer micro- and nanostructures based on electrospinning
	Introduction
		Nanotechnology for advanced materials
		3D polymer micro- and nanostructures
	Background
		Additive manufacturing
		Electrospinning process
			Jet initiation and elongation
			Growth of bending instability and further elongation
		Methods to fabricate 3D electrospun polymer micro- and nanostructures
			Multilayer electrospinning
			Stacking
			Application of 3D collecting template
			Freeze drying into shapes
			Self-assembly
	3D and 4D electrospinning technique
		Basic principles
		Apparatus
			x-y-z axis motion control
			3D/4D electrospinning nozzle
			Solution control
			High-voltage control
			Ambient control
		3D and 4D electrospinning process
			Digital 3D model design
			G-code generation
			Material preparation
			Printing 3D nanofibrous materials
			Finishing
		Characterization
			Optical microscopy
			Scanning electron microscopy
			Surface area measurements
		Processing parameters
			Solution parameters
			Applied voltage
			Working distance
			Solution flow rate
			Nozzle moving speed
			Temperature and humidity
	Potential applications
		Biomedical applications
			Tissue engineering and drug development
			4D nanomaterials
		Energy applications
			Batteries
			Fuel cells
			Supercapacitors
		Catalysis
		Filtration
		Food industry
		Cosmetics
		Sound insulators
	Summary
	Challenges and future perspectives
	References
Multifunctional polymer composites for 3D and 4D printing
	Introduction
	Multifunctional structures
		Piezoelectric structures
		Battery fiber structures
		PV structures
		Flexible electronics structures
	4D structures
	Conclusions
	References
Graphene and graphene oxide-reinforced 3D and 4D printable composites
	Introduction
		A brief introduction to graphene
		Emerging graphene 3DP
	Feasible techniques for graphene 3DP
		Direct ink writing
			Additive strategies
				Hydrogen bond
				Electrostatic interaction
				Reactive inks
				Additive rheology effects
			Additive-free approaches
				Highly concentrated GO inks
				Process assistance
		Fused deposition modeling
		Light-based 3DP
	The properties of 3D-printed graphene-based materials
	Applications of 3D-printed graphene
		Energy storage applications
		Solar energy
		High temperature application
		Sensoring
	Prospect and outlook
	References
	Further reading
3D and 4D printing of polymer/CNTs-based conductive composites
	Introduction
	Traditional approaches
		Solution processing of CNTs and polymer
		Melting the polymer
		Milling
	3D printing
	3D printing techniques
		FDM
		Stereolithography (SLA)
		PolyJet
		Powder bed and inkjet head 3D printing (3DP)
		Selective laser sintering (SLS)
		Direct write (DW)
		Inkjet printing
		Aerosol jet printing (AJP)
		Tailoring the interface of polymer/CNTs
	Applications
		Electrical conductivity and transparency
		Electromagnetic shielding effect
		Electronic devices
		Tissue engineering
	4D printing
	Limitations and future research
		Material innovation
		Polymer-CNT interfacial properties
		Material homogeneity
		3D equipment and printability
	Conclusion
	References
	Further reading
Medical and biomedical applications of 3D and 4D printed polymer nanocomposites
	Introduction
	3D and 4D printed polymer nanocomposites for biomedical applications
		3D printing technologies
		Nanofillers classification
	Applications
		Nanocomposites for physical properties tuning of 3D printed scaffolds
			Nanofibrillated cellulose (NFC)
			Nanosilica/nanoclay
			Ferroferric oxide (Fe3O4)
			Nanohydroxyapatite (nHA)
			Carbon-based nanoparticles
		Nanocomposites for 3D printing of active devices
		Nanocomposites for 3D printing of diagnostic and therapeutic tools
	Challenges and future perspectives
	Conclusion
	References
	Further reading
Carbon black-reinforced 3D and 4D printable conductive polymer composites
	Introduction
	Fabrication and characteristic
	Conductive and physical mechanism
	Applications of 3D and 4D printable CB composites
		Strain sensor
		Soft equivalent spring buffer and electrode for energy harvesting
	Challenges and future perspectives
	Conclusions
	References
Photoactive resin formulations and composites for optical 3D and 4D printing of functional materials and devices
	Introduction
	Photopolymerization-based additive manufacturing (AM) technologies
	Fundamentals of photopolymerization-based AM
		Penetration depth, critical exposure, and cure depth
		Photopolymerization kinetics
			Photopolymerization kinetic models
			Characterization techniques for monitoring SLA kinetics
		Recoating mechanisms
			Free surface
			Constrained surface
	Photoresin formulations
		Additives
			Photoinitiators
			Absorbers
		Composite formulations
	Applications
		4D printing
		Sensors, actuators, and transducers
		Energy applications
		Biomedical applications
	Conclusion
	References
Hydrogels and hydrogel composites for 3D and 4D printing applications
	Introduction
	3D printing of hydrogels and hydrogel composites
		Nozzle-based 3D printing
		Inkjet printer-based 3D printing
		Laser-based 3D printing
	Hydrogels and hydrogel composites for 3D printing
		Hydrogels derived from natural polymers
			Collagen
			Gelatin
			Alginate
			κ-Carrageenans
			Gellan gum
			Chitosan
			Oppositely charged hydrogels
			Interfacial bonding
		Hydrogels from synthetic polymers
			Poly (ethylene glycol)
			Poly (vinyl alcohol)
			Pluronics
		Hydrogel composites
			Double network hydrogels
			Particle-reinforced hydrogels
			Fiber-reinforced hydrogels
	Applications of 3D printed hydrogel and hydrogel composites
		Tissue engineering
		Multifunctional devices
	4D printing of hydrogels and hydrogel composites
	Conclusion
	References
	Further reading
3D and 4D printing of biomaterials and biocomposites, bioinspired composites, and related transformers
	Introduction
	Deposition techniques for 3D printing of biomaterials
		Stereolithography
		Extrusion printing
		Inkjet printing
		Selective laser sintering/melting
	Materials for 3D printing of biomaterials
		Hard matter
		Soft matter
		Biologically derived materials
		Composite materials
	Applications of 3D printed biomaterials
		Tissue engineering
		Medicine and drug delivery
		Dentistry
	4D printing and its applications for biomaterials
		Techniques in 4D printing
		Materials and applications of biomaterials in 4D
	Conclusions and future perspectives
		3D printed biomaterials
		4D printed biomaterials
	References
3D and 4D printed polymer composites for electronic applications
	Introduction
	Why 3D/4D printing composites for electronic applications?
		Why 3D/4D printing?
		Why composites for electronic applications?
	3D and 4D printable electrically conductive composites
		Percolation theory in conductive composites
		Processes of 3D printing of conductive composites
			Extrusion of conductive composites
			Inkjet printing of conductive composites
			SLA of conductive composites
			SLS of conductive composites
		Role of conductive composites in 4D printing
		Applications of 3D and 4D printable conductive composites
			Printed electrode applications
			Printed sensor applications
	3D and 4D printable dielectric composites
		Work principle of dielectric composites
			Dielectric elastomer composites
			Highly insulating composites
		Processes of 3D printing of dielectric composites
			Extrusion of dielectric composites
			Inkjet printing of dielectric composites
			SLA of dielectric composites
			SLS of dielectric composites
		Applications of 3D and 4D printable dielectric composites
			RF-responsive structures
			Electrical insulators
			Dielectric elastomer actuators
	Conclusion
	References
	Further reading
Fundamentals and applications of 3D and 4D printing of polymers: Challenges in polymer processing and prospec ...
	Introduction
	Fundamentals of 3D printing processes
		VAT photopolymerization
			Stereolithography
			Digital light processing
			Continuous liquid interface production
			Multiphoton polymerization
		Powder bed fusion
			Selective laser sintering
		Material extrusion
			Fused deposition modeling
		Binder jetting
			Inkjet printing
			Aerosol jet printing
	Challenges in polymer processing
		Mechanical properties
		Resolution
		Manufacturing speed
		Multimaterial printing
		Biocompatibility
	Applications of 3D and 4D printing of polymers
	Polymer nanocomposites in 3D and 4D printing
		Fiber-reinforced polymer nanocomposites
		Nanoparticle-reinforced polymer nanocomposites
	Prospects of future research
	Conclusions
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W




نظرات کاربران