دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: MANIRUZZAMAN. MOHAMMED
سری:
ISBN (شابک) : 9783527344437, 9783527813704
ناشر: WILEY VCH
سال نشر: 2019
تعداد صفحات: 479
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب 3D AND 4D PRINTING IN BIOMEDICAL APPLICATIONS: process engineering and additive manufacturing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب چاپ سه بعدی و 4 بعدی در کاربردهای زیست پزشکی: مهندسی فرآیند و تولید مواد افزودنی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راهنمای حرفه ای تکنیک های چاپ سه بعدی و چهار بعدی در زیست پزشکی و داروسازی. چاپ سه بعدی و چهار بعدی در کاربردهای زیست پزشکی مقدمه ای محکم برای تکنیک های چاپ سه بعدی و چهار بعدی در زیست پزشکی و داروسازی فراهم می کند. این کتاب مرجع شامل مشارکتهای دانشمندان بینالمللی و کارشناسان صنعت است و مروری بر موضوع، نتایج تحقیقات جاری و نوآوریها برای کاربردهای داروسازی و زیستپزشکی ارائه میدهد. بهینه سازی فرآیند، فرآیندهای نوآوری، مهندسی و فناوری های پلت فرم مورد بررسی قرار می گیرند. علاوه بر این، این کار اطلاعاتی را در مورد پیشرفتهای زیستپزشکی فراهم میکند، به عنوان مثال. در مورد پلیمرهای حافظه شکل، بیوفراکشن 4 بعدی و استخوان های چاپ شده. تعداد زیادی از موضوعات با جزئیات بیشتر پوشش داده شده و مورد بررسی قرار خواهند گرفت: پتانسیل چاپ سه بعدی برای تحویل دارو، فرآیندهای تولید جدید، داربست زیستی، آخرین روندها و چالش های چاپ زیستی سه بعدی و چهار بعدی در ساخت زیستی. این اثر ارزشمند مرجع - راهنمای جامع تکنیک های چاپ سه بعدی و چهار بعدی در زیست پزشکی و داروسازی است. - به اطلاع i.a. در مورد اولین پلت فرم چاپ سه بعدی پاکسازی شده توسط FDA برای یک محصول دارویی. - شامل بررسی محصولات دارویی موجود که با استفاده از چاپ سه بعدی ساخته شده اند. - ارائه آخرین پیشرفت ها در مواد جدید برای چاپ سه بعدی و چهار بعدی و کاربردهای زیست پزشکی.
Ein professioneller Leitfaden zu 3D- und 4D-Drucktechniken in der Biomedizin und Pharmazie. 3D and 4D Printing in Biomedical Applications führt fundiert in 3D- und 4D-Drucktechniken in der Biomedizin und Pharmazie ein. Dieses Fachbuch enthält Beiträge von internationalen Wissenschaftlern und Industrieexperten und bietet einen Überblick über das Thema, aktuelle Forschungsergebnisse und Innovationen zu Anwendungen in der Pharmazie und Biomedizin. Untersucht werden Prozessoptimierung, Innovationsprozesse, Engineering- und Plattformtechnologien. Darüber hinaus informiert das Werk über Entwicklungen in der Biomedizin, u. a. über Formgedächtnispolymere, Biofabrikation in 4D und Knochen aus dem Drucker. Eine Fülle von Themen werden behandelt und näher beleuchtet: Potenzial des 3D-Drucks für die Wirkstoffverabreichung, neue Fertigungsprozess, Bio-Scaffolding, neueste Trends und Herausforderungen für 3D- und 4D-Bioprinting in der Biofabrikation. Dieses wertvolle Referenzwerk - ist ein umfassender Leitfaden zu 3D- und 4D-Drucktechniken in der Biomedizin und Pharmazie. - informiert u. a. über die erste 3D-Druckplattform mit FDA-Zulassung für ein pharmazeutisches Erzeugnis. - enthält Reviews der derzeit verfügbaren pharmazeutischen Erzeugnisse, die per 3D-Druck hergestellt wurden. - präsentiert die jüngsten Fortschritte bei neuartigen Materialien für den 3D- und 4D-Druck und biomedizinische Anwendungen.
Cover Title Page Copyright Contents Preface Chapter 1 3D/4D Printing in Additive Manufacturing: Process Engineering and Novel Excipients 1.1 Introduction 1.2 The Process of 3D and 4D Printing Technology 1.3 3D/4D Printing for Biomedical Applications 1.4 Smart or Responsive Materials for 4D Biomedical Printing 1.5 Classification of 3D and 4D Printing Technologies 1.5.1 Fused Filament Fabrication (FFF) – Extrusion‐Based Systems 1.5.2 Powder Bed Printing (PBP) – Droplet‐Based Systems 1.5.3 Stereolithographic (SLA) Printing – Resin‐Based Systems 1.5.4 Selective Laser Sintering (SLS) Printing – Laser‐Based Systems 1.6 Conclusions and Perspectives References Chapter 2 3D and 4D Printing Technologies: Innovative Process Engineering and Smart Additive Manufacturing 2.1 Introduction 2.2 Types of 3D Printing Technologies 2.2.1 Stereolithographic 3D Printing (SLA) 2.2.2 Powder‐Based 3D Printing 2.2.3 Selective Laser Sintering (SLS) 2.2.4 Fused Deposition Modeling (FDM) 2.2.5 Semisolid Extrusion (EXT) 3D Printing 2.2.6 Thermal Inkjet Printing 2.3 FDM 3D Printing Technology 2.3.1 FDM 3D Printing Applications in Unit Dose Fabrications and Medical Implants 2.4 Hot Melt Extrusion Technique to Produce 3D Printing Polymeric Filaments 2.5 Smart Medical Implants Integrated with Sensors 2.5.1 Examples of Medical Implants with Sensors 2.6 4D Printing and Future Perspectives 2.6.1 4D Printing and Its Transition in Material Fabrication 2.6.2 Shape Memory or Stimuli‐Responsive Mechanism of 4D Printing 2.6.3 Factors Affecting 4D Printing 2.6.3.1 Humidity‐Responsive Materials 2.6.3.2 Temperatures 2.6.3.3 Electronic and Magnetic Stimuli 2.6.3.4 Light 2.6.4 Future Perspectives of 4D Printing 2.7 Regulatory Aspects 2.8 Conclusions References Chapter 3 3D Printing: A Case of ZipDose® Technology – World\'s First 3D Printing Platform to Obtain FDA Approval for a Pharmaceutical Product 3.1 Introduction 3.2 Terminology 3.3 Historical Context for This Form of 3D Printing 3.4 ZipDose® Technology 3.5 3D Printing Machines and Pharmaceutical Process Design 3.5.1 Overview 3.5.2 Generalized Process in the Pharmaceutical Context 3.5.3 Exemplary 3DP Machine Designs 3.6 Development of SPRITAM® 3.6.1 Product Concept and Need 3.6.2 Regulatory Approach 3.6.3 Introduction of the Technology to FDA 3.6.4 Target Product Profile 3.6.5 Synopsis of Formulation and Clinical Development 3.7 Conclusion Acknowledgments References Chapter 4 Manufacturing of Biomaterials via a 3D Printing Platform 4.1 Additive Manufacturing and Bioprinting 4.2 Bioinks 4.2.1 Printability Control – Bioink Composition and Environmental Factors 4.2.2 Mechanisms for Filament Formation and Stability 4.3 3D Bioprinting Systems 4.3.1 Multifaceted Systems 4.3.2 Major Components 4.3.3 Pneumatic Printhead 4.3.4 Mechanical Displacement Printhead 4.3.5 Inkjet Printhead 4.3.6 Heated and Cooled Printheads 4.3.7 High‐Temperature Extruder 4.3.8 Multimaterial Printhead 4.3.9 Heated and Cooled Printbed 4.3.10 Clean Chamber Technology 4.3.11 Video‐Capture Printhead and Sensors 4.3.12 Integrated Intelligence 4.4 Applications 4.4.1 Internal Architecture 4.4.2 Integrated Vascular Networks and Microstructure Patterning 4.4.3 Personalized Medicine 4.5 Steps Necessary for Broader Application References Chapter 5 Bioscaffolding: A New Innovative Fabrication Process 5.1 Introduction: From Bioscaffolding to Bioprinting 5.2 Scaffolding 5.2.1 Properties of Scaffolds 5.2.2 Bioprinters vs Common 3D Printers: Approaches for Extrusion of Polymers 5.2.3 Comparing Cell Seeding Techniques to 3D Bioprinting or Cell‐Laden Hydrogels 5.2.3.1 From Printing to Bioprinting 5.2.3.2 Approaches of Stabilizing Printed Constructs 5.2.4 Examples/Applications of Cell‐Seeded Scaffolds 5.2.5 Data Processing of 3D CAD Data for Bioscaffolds 5.3 Bioprinted Scaffolds 5.3.1 Bioinks 5.3.2 Tools for Multimaterial Printing 5.3.3 Multimaterial Scaffold 5.3.4 Core–Shell Scaffolds 5.3.5 Additional Technical Equipment 5.3.6 Piezoelectric Pipetting Technology 5.3.7 Usage of Piezoelectric Inkjet Technology with Bioscaffolds 5.4 Applications of Bioscaffolder and Bioprinting Systems 5.4.1 Individualized Implants and Tissue Constructs 5.4.2 Green Bioprinting 5.4.3 Challenges for Clinical Applications of Bioprinted Scaffolds in Tissue and Organ Engineering 5.4.4 4D Printing 5.5 Conclusion References Chapter 6 Potential of 3D Printing in Pharmaceutical Drug Delivery and Manufacturing 6.1 Introduction 6.2 Pharmaceutical Drug Delivery 6.3 Conventional Manufacturing vs 3D Printing 6.4 Advanced Applications for Improved Drug Delivery 6.5 Instrumentations 6.6 Location of 3D Printing Manufacturing 6.6.1 Pharmaceutical Industry 6.6.2 At the Point of Care 6.6.3 Print‐at‐Home 6.7 Regulatory Aspects 6.8 Summary References Chapter 7 Emerging 3D Printing Technologies to Develop Novel Pharmaceutical Formulations 7.1 Introduction 7.2 FDM 3D Printing 7.3 Pressure‐Assisted Microsyringe 7.4 SLA 3D Printing 7.5 Powder Bed 3D Printing 7.6 SLS 3D Printing 7.7 3D Inkjet Printing 7.8 Conclusions References Chapter 8 Modulating Drug Release from 3D Printed Pharmaceutical Products 8.1 Introduction 8.2 Pharmaceutically Used 3D Printing Processes and Techniques 8.2.1 Process Flow of 3D Printing Processes 8.2.2 Inkjet‐Based Printing Technologies 8.2.3 Extrusion‐Based Printing Techniques 8.2.4 Laser‐Based Techniques 8.3 Modifying the Drug Release Profile from 3D Printed Dosage Forms 8.3.1 Approaches to Modify the Drug Release 8.3.2 Modifying the Drug Release by Formulation Variation 8.3.2.1 Fused Filament Fabrication 8.3.2.2 Other Printing Techniques 8.3.3 Manipulating the Dosage Form Geometry as a Means to Modify API Release 8.3.3.1 Fused Filament Fabrication 8.3.3.2 Drop‐on‐Drop Printing 8.3.4 Dissolution Control via Directed Diffusion and Compartmentalization 8.3.4.1 Drop‐on‐Powder Printing 8.3.4.2 Fused Filament Fabrication 8.3.4.3 Printing with Pressure‐Assisted Microsyringes 8.4 Conclusion References Chapter 9 Novel Excipients and Materials Used in FDM 3D Printing of Pharmaceutical Dosage Forms 9.1 Introduction 9.2 Biodegradable Polyester 9.2.1 Polylactic Acid (PLA) 9.2.2 Poly(????‐caprolactone) (PCL) 9.3 Polyvinyl Polymer 9.3.1 Polyvinyl Alcohol (PVA) 9.3.2 Ethylene Vinyl Acetate (EVA) 9.3.3 Polyvinylpyrrolidone (PVP) 9.3.4 Soluplus 9.4 Cellulosic Polymers 9.4.1 Hydroxypropyl Cellulose (HPC) 9.4.2 Hydroxypropyl Methylcellulose (HPMC) 9.4.3 Hydroxypropyl Methylcellulose Acetate Succinate (HPMCAS) 9.5 Polymethacrylate‐Based Polymers 9.5.1 Eudragit RL/RS 9.5.2 Eudragit L100‐55 9.5.3 Eudragit E 100 9.6 Conclusion References Chapter 10 Recent Advances of Novel Materials for 3D/4D Printing in Biomedical Applications 10.1 Introduction 10.2 Materials for 3DP 10.3 Rheology 10.4 Ceramics for 3D Printing 10.5 Polymers and Biopolymers for 3D Printing 10.5.1 Polylactide (PLA) 10.5.2 Poly(????‐caprolactone) (PCL) 10.5.3 Hyaluronic Acid 10.6 4D Printing 10.6.1 Bioprinting 10.6.2 Smart or Intelligent Materials 10.6.2.1 Thermal Stimuli‐Induced Transformation 10.6.2.2 Hydrogel 10.7 3D and 4D Printed Bone Scaffolds with Novel Materials 10.7.1 3DP/4DP for Drug Delivery and Bioprinting 10.7.2 Polyurethane‐Based Scaffolds for Tissue Engineering 10.8 Future and Prospects References Chapter 11 Personalized Polypills Produced by Fused Deposition Modeling 3D Printing 11.1 Introduction 11.2 Polypharmacy and Polypills 11.2.1 Clinical Evidence and Current State of the Art 11.2.2 Future Personalization 11.3 FDM 3D Printing of Pharmaceutical Solid Dosage Forms 11.3.1 Basic Principle of FDM 3D Printing 11.3.2 Printing Parameter Control 11.3.3 Drug‐Loading Methods 11.4 Key Challenges in the Development of FDM 3D Printed Personalized Polypills 11.4.1 Printable Pharmaceutical Materials 11.4.2 Printing Precision and Printer Redesign 11.4.3 Regulatory Barriers for Personalized Polypill Printing 11.5 Conclusions and Future Remarks References Chapter 12 3D Printing of Metallic Cellular Scaffolds for Bone Implants 12.1 Introduction 12.2 Metal 3D Printing Techniques for Bone Implants 12.2.1 Selective Laser Melting 12.2.2 Selective Electron Beam Melting 12.3 Biometals for Bone Implants 12.3.1 Nondegradable Biometals 12.3.2 Biodegradable Biometals 12.3.3 3D Printing of Biometals 12.3.3.1 Ti–6Al–4V ELI Alloy 12.3.3.2 CoCrMo Alloy 12.3.3.3 Stainless Steel 316L Alloy 12.3.3.4 NiTi Shape Memory Alloy 12.3.3.5 Tantalum 12.3.3.6 Mg and Its Alloy 12.4 Cellular Structure Design 12.4.1 Stochastic and Reticulated Cellular Design 12.4.2 Bend‐ and Stretch‐Dominated Cellular Design 12.4.3 Scaffold Design Feasibility 12.5 Outlook References Chapter 13 3D and 4D Scaffold‐Free Bioprinting 13.1 Introduction 13.2 3D Scaffold‐Free Bioprinting 13.2.1 Principles 13.2.2 Spheroid Optimization 13.2.3 3D Bioprinting 13.2.4 Decannulation and Functional Assessment 13.3 4D Bioprinting 13.3.1 Properties of “Smart” Materials 13.3.2 General Approaches 13.3.2.1 “Smart” Scaffolds 13.3.2.2 In Vivo Bioprinting 13.3.2.3 Hybrid Techniques 13.3.3 4D Bioprinting Technologies 13.3.4 Applications 13.3.5 Limitations and Future Directions 13.4 4D Scaffold‐Free Bioprinting 13.5 Conclusion Acknowledgments References Chapter 14 4D Printing and Its Biomedical Applications 14.1 Introduction 14.2 3D Printing Technologies with Potential for 4D Printing 14.2.1 Fused Deposition Modeling (FDM) 14.2.2 Direct Ink Writing (DIW) 14.2.3 Inkjet 14.2.4 Projection Stereolithography (pSLA) 14.3 Soft Active Materials for 4D Printing 14.3.1 Shape Memory Polymers 14.3.2 Hydrogels 14.3.3 Other SAMs 14.4 Biomedical Applications of 4D Printing 14.4.1 Temperature‐Actuated 4D Printing 14.4.2 Humidity‐Actuated 4D Printing 14.5 Conclusion and Outlook References Chapter 15 Current Trends and Challenges in Biofabrication Using Biomaterials and Nanomaterials: Future Perspectives for 3D/4D Bioprinting 15.1 Introduction 15.2 Biofabrication as a Multidisciplinary to Interdisciplinary Research Field 15.3 Biofabrication as a Multifaceted Approach 15.4 Biofabrication Beyond Biomedical Pharmaceutical Applications 15.5 The Diversity of Techniques Used in Biofabrication 15.6 Natural Resources as Sources of Biomaterials Useful for Biofabrication 15.7 Nanomaterials as Much More Than Just New Building Blocks for Biofabrication 15.8 3D Bioprinting as the New Gold Standard for Biofabrication 15.9 When 3D Bioprinting Is Not Sufficient for Bioconstruction: 4D Bioprinting 15.10 An Overview About Current Bottlenecks in Biofabrication 15.10.1 Does 3D Model Matter in Biofabrication? 15.10.2 Does Size and Time Matter in Biofabrication? 15.10.3 Do Choice Materials and Cells Matters in Biofabrication? 15.10.4 Does Maturation of the Bioconstructs Matter in Biofabrication? 15.10.5 Do Characterization Methods Matters in Biofabrication? 15.10.6 Does Economic and Social Impact Matter Biofabrication? 15.10.7 Does Ethical and Legal Issues Matter in Biofabrication? 15.11 Conclusion References Chapter 16 Orthopedic Implant Design and Analysis: Potential of 3D/4D Bioprinting 16.1 Orthopedic Implant Design with 3D Printing 16.1.1 Bone Properties and Orthopedic Implants 16.1.2 3D Printing and Porous Implant Design 16.2 Analysis of 3D Printed Orthopedic Implants 16.2.1 Mechanical Properties of Porous Structures 16.2.2 Experimental Testing of 3D Printed Femoral Stems 16.2.3 Finite Element Analysis of Porous Stems with 3D Printing 16.3 3D Printed Orthopedic Implant Installation and Instrumentation 16.4 Orthopedic Implants Manufactured with 4D Printing 16.5 Summary References Chapter 17 Recent Innovations in Additive Manufacturing Across Industries: 3D Printed Products and FDA\'s Perspectives 17.1 Introduction 17.2 Current Widely Used Processes Across Industries 17.2.1 Fused Deposition Modeling (FDM) 17.2.2 Stereolithography (SLA) and Digital Light Processing (DLP) 17.2.3 Selective Laser Sintering (SLS) 17.3 Emerging 3D Printing Processes and Technologies 17.3.1 Continuous Liquid Interface Production (CLIP) 17.3.2 Multi Jet Fusion (MJF) 17.4 Industry Uses of Additive Manufacturing Technologies 17.5 Material and Processes for Medical and Motorsport Sectors 17.6 Medical Industry Usage and Materials Development 17.7 3D Printing of Medical Devices: FDA\'s Perspectives 17.7.1 FDA\'s Role in 3D Printing of Materials 17.7.2 Classifications of Medical Devices from FDA\'s Viewpoint 17.7.3 Medical Applications of 3D Printing and FDA\'s Expectations 17.7.4 Person‐Specific Devices 17.7.5 Process of 3D Printing of Various Medical Devices 17.7.6 Materials Used in 3D Printed Devices Overall 17.7.7 Materials Used in Specific Application (Printed Dental Devices) 17.8 Conclusions References Index EULA