ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب 3000 Years of Analysis: Mathematics in History and Culture

دانلود کتاب 3000 سال تجزیه و تحلیل: ریاضیات در تاریخ و فرهنگ

3000 Years of Analysis: Mathematics in History and Culture

مشخصات کتاب

3000 Years of Analysis: Mathematics in History and Culture

دسته بندی: تاریخ
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 3030582213, 9783030582210 
ناشر: Birkhäuser 
سال نشر: 2020 
تعداد صفحات: 717 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 214 مگابایت 

قیمت کتاب (تومان) : 49,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب 3000 Years of Analysis: Mathematics in History and Culture به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب 3000 سال تجزیه و تحلیل: ریاضیات در تاریخ و فرهنگ نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب 3000 سال تجزیه و تحلیل: ریاضیات در تاریخ و فرهنگ

تحلیل دقیقا چیست؟ مقادیر بی نهایت کوچک یا بی نهایت بزرگ چیست؟ تقسیم ناپذیر و بی نهایت کوچک چیست؟ اعداد حقیقی، پیوستگی، پیوستگی، دیفرانسیل ها و انتگرال ها چیست؟ پاسخ این سوالات و سوالات دیگر را در این کتاب بی نظیر خواهید یافت! منشاء و تکامل این شاخه مهم از ریاضیات را که اویلر آن را "تحلیل نامتناهی" نامیده است به تفصیل توضیح می دهد. انبوهی از نمودارها، جداول، تصاویر رنگی و شکل ها برای نشان دادن تاریخ شگفت انگیز تحلیل از دوران باستان تا کنون است. علاوه بر این، محتوا در ارتباط با رویدادهای تاریخی و فرهنگی دوره‌های مربوطه، زندگی دانشمندانی که به دنبال دانش هستند، و بینش‌هایی در زمینه‌های فرعی تحلیلی که آنها ایجاد و شکل داده‌اند، و همچنین کاربردها در تقریباً هر جنبه‌ای از مدرن ارائه می‌شود. زندگی که با تجزیه و تحلیل ممکن شد.


توضیحاتی درمورد کتاب به خارجی

What exactly is analysis? What are infinitely small or infinitely large quantities? What are indivisibles and infinitesimals? What are real numbers, continuity, the continuum, differentials, and integrals? You’ll find the answers to these and other questions in this unique book! It explains in detail the origins and evolution of this important branch of mathematics, which Euler dubbed the “analysis of the infinite.” A wealth of diagrams, tables, color images and figures serve to illustrate the fascinating history of analysis from Antiquity to the present. Further, the content is presented in connection with the historical and cultural events of the respective epochs, the lives of the scholars seeking knowledge, and insights into the subfields of analysis they created and shaped, as well as the applications in virtually every aspect of modern life that were made possible by analysis.



فهرست مطالب

About the Author
Preface of the Author
Preface of the Editors
Advice to the reader
Contents
1 Prologue: 3000 Years of Analysis
	1.1 What is ‘Analysis’?
	1.2 Precursors of ˇ
	1.3 The of the Bible
	1.4 Volume of a Frustum of a Pyramid
	1.5 Babylonian Approximation of 2
2 The Continuum in Greek-Hellenistic Antiquity
	2.1 The Greeks Shape Mathematics
		2.1.1 The Very Beginning: Thales of Miletus and his Pupils
		2.1.2 The Pythagoreans
		2.1.3 The Proportion Theory of Eudoxus in Euclid’s Elements
		2.1.4 The Method of Exhaustion – Integration in the Greek Fashion
		2.1.5 The Problem of Horn Angles
		2.1.6 The Three Classical Problems of Antiquity
			Concerning the Quadrature of the Circle
			Concerning the Trisection of the Angle
			Concerning the Doubling of the Cube
		Remarks
	2.2 Continuum versus Atoms – Infinitesimals versus Indivisibles
		2.2.1 The Eleatics
		2.2.2 Atomism and the Theory of the Continuum
		2.2.3 Indivisibles and Infinitesimals
		2.2.4 The Paradoxes of Zeno
	2.3 Archimedes
		2.3.1 Life, Death, and Anecdotes
		2.3.2 The Fate of Archimedes’s Writings
		2.3.3 The Method: Access with Regard to Mechanical Theorems
			Weighing the Area Under a Parabola
			The Volume of a Paraboloid of Rotation
		2.3.4 The Quadrature of the Parabola by means of Exhaustion
		2.3.5 On Spirals
		2.3.6 Archimedes traps
	2.4 The Contributions of the Romans
	Approaches to Analysis in the Greek Antiquity
3 How Knowledge Migrates – From Orient to Occident
	3.1 The Decline of Mathematics and the Rescue by the Arabs
	3.2 The Contributions of the Arabs Concerning Analysis
		3.2.1 Avicenna (Ibn S¯in¯a): Polymath in the Orient
		3.2.2 Alhazen (Ibn al-Haytham): Physicist and Mathematician
		3.2.3 Averroes (Ibn Rushd): Islamic Aristotelian
		Contributions of Islamic Scholars to Analysis
4 Continuum and Atomism in Scholasticism
	4.1 The Restart in Europe
	4.2 The Great Time of the Translators
	4.3 The Continuum in Scholasticism
		4.3.1 Robert Grosseteste
		4.3.2 Roger Bacon
		4.3.3 Albertus Magnus
		4.3.4 Thomas Bradwardine
			Life in the 14th Century: The Black Death
			Concerning Infinity
			Bradwardine’s Continuum
			Latitudes of Form: The Merton Rule as First Law of Motion
		4.3.5 Nicole Oresme
			Summation of Infinite Serie
			Latitudes of Form and the Merton Rule
			The Doctrine of Proportions
	4.4 Scholastic Dissenters
	4.5 Nicholas of Cusa
		4.5.1 The Mathematical Works
		Contributions to Analyis in the European Middle Ages
5 Indivisibles and Infinitesimals in the Renaissance
	5.1 Renaissance: Rebirth of Antiquity
	5.2 The Calculators of Barycentres
	5.3 Johannes Kepler
		5.3.1 New Stereometry of Wine Barrels
	5.4 Galileo Galilei
		5.4.1 Galileo’s Treatment of the Infinite
			Aristotle’s Wheel
			Galilei and Indivisibles
			The Cardinality of the Square Numbers
	5.5 Cavalieri, Guldin, Torricelli, and the High Art of Indivisibles
		5.5.1 Cavalieri’s Method of Indivisibles
		5.5.2 The Criticism of Guldin
		5.5.3 The Criticism of Galilei
		5.5.4 Torricelli’s Apparent Paradox
		5.5.5 De Saint-Vincent and the Area under the Hyperbola
			The Geometric Series of Saint-Vincent
			Horn Angles at Saint-Vincent
			The Area Under the Hyperbola Following Saint-Vincent
			Analysis and Astronomy during the Renaissance
6 At the Turn from the 16th to the 17th Century
	6.1 Analysis in France before Leibniz
		6.1.1 France at the turn of the 16th to the 17th Century
		6.1.2 René Descartes
			The Circle Method of Descartes
		6.1.3 Pierre de Fermat
			The Quadrature of Higher Parabolas
			Fermat’s Method of Pseudo-Equality
		6.1.4 Blaise Pascal
			The Integration of xp
			The Characteristic Triangle
			Further Works Concerning Analysis
		6.1.5 Gilles Personne de Roberval
			The Area Under the Cycloid
			The Quadrature of xp
	6.2 Analysis Prior to Leibniz in the Netherlands
		6.2.1 Frans van Schooten
		6.2.2 René François Walther de Sluse
		6.2.3 Johannes van Waveren Hudde
		6.2.4 Christiaan Huygens
	6.3 Analysis Before Newton in England
		6.3.1 The Discovery of Logarithms
		6.3.2 England at the Turn from the 16th to the 17th Century
		6.3.3 John Napier and His Logarithms
			The Construction of Napier’s Logarithms
			Napier’s Kinematic Model
			The Early Meaning of Napier’s Logarithms
		6.3.4 Henry Briggs and His Logarithms
			The Construction Idea of Briggsian Logarithms
			The Successive Extraction of Roots
			Was Briggs’ Difference Calculus Stolen From Bürgi?
			The Early Invention of the Binomial Theorem
		6.3.5 England in the 17th Century
		6.3.6 John Wallis and the Arithmetic of the Infinite
			Wallis and the Establishing of the Royal Society
			Wallis’ Mathematics at Oxford
		6.3.7 Isaac Barrow and the Love of Geometry
			Barrows Mathematics
		6.3.8 The Discovery of the Series of the Logarithms by Nicholas Mercator
		6.3.9 The First Rectifications: Harriot and Neile
			Thomas Harriot
			William Neile
		6.3.10 James Gregory
	6.4 Analysis in India
		Development of Analysis in the 16th/17th Century
7 Newton and Leibniz – Giants and Opponents
	7.1 Isaac Newton
		7.1.1 Childhood and Youth
		7.1.2 Student in Cambridge
		7.1.3 The Lucasian Professor
		7.1.4 Alchemy, Religion, and the Great Crisis
		7.1.5 Newton as President of the Royal Society
		7.1.6 The Binomial Theorem
		7.1.7 The Calculus of Fluxions
		7.1.8 The Fundamental Theorem
		7.1.9 Chain Rule and Substitutions
		7.1.10 Computation with Series
		7.1.11 Integration by Substitution
		7.1.12 Newtons Last Works Concerning Analysis
		7.1.13 Newton and Differential Equations
	7.2 Gottfried Wilhelm Leibniz
		7.2.1 Childhood, Youth, and Studies
		7.2.2 Leibniz in the Service of the Elector of Mainz
		7.2.3 Leibniz in Hanover
		7.2.4 The Priority Dispute
		7.2.5 First Achievements with Difference Sequences
		7.2.6 Leibniz’s Notation
		7.2.7 The Characteristic Triangle
		7.2.8 The Infinitely Small Quantities
		7.2.9 The Transmutation Theorem
		7.2.10 The Principle of Continuity
		7.2.11 Differential Equations with Leibniz
	7.3 First Critical Voice: George Berkeley
		Development of the Infinitesimal Calculus and the Priority Dispute
8 Absolutism, Enlightenment, Departure to New Shores
	8.1 Historical Introduction
	8.2 Jacob and John Bernoulli
		8.2.1 The Calculus of Variations
	8.3 Leonhard Euler
		8.3.1 Euler’s Notion of Function
		8.3.2 The Infinitely Small in Euler’s View
		8.3.3 The Trigonometric Functions
	8.4 Brook Taylor
		8.4.1 The Taylor Series
		8.4.2 Remarks Concerning the Calculus of Differences
	8.5 Colin Maclaurin
	8.6 The Beginnings of the Algebraic Interpretation
		8.6.1 Lagrange’s Algebraic Analysis
	8.7 Fourier Series and Multidimensional Analysis
		8.7.1 Jean Baptiste Joseph Fourier
		8.7.2 Early Discussions of the Wave Equation
		8.7.3 Partial Differential Equations and Multidimensional Analysis
		8.7.4 A Preview: The Importance of Fourier Series for Analysis
		Mathematicians and their Works Concerning the Analysis of the 18th Century
9 On the Way to Conceptual Rigour in the 19th Century
	From the French Revolution to the German Empire
	Science and Engineering in the Industrial Revolution
	9.1 From the Congress of Vienna to the German Empire
	9.2 Lines of Developments of Analysis in the 19th Century
	9.3 Bernhard Bolzano and the Pradoxes of the Infinite
		9.3.1 Bolzano’s Contributions to Analysis
	9.4 The Arithmetisation of Analysis: Cauchy
		9.4.1 Limit and Continuity
		9.4.2 The Convergence of Sequences and Series
		9.4.3 Derivative and Integral
	9.5 The Development of the Notion of Integral
	9.6 The Final Arithmetisation of Analysis: Weierstraß
		9.6.1 The Real Numbers
		9.6.2 Continuity, Differentiability, and Convergence
		9.6.3 Uniformity
	9.7 Richard Dedekind and his Companions
		9.7.1 The Dedekind Cuts
		Substantial Results in Analysis 1800-1872
10 At the Turn to the 20th Century: Set Theory and the Search for the True Continuum
	General History 1871 to 1945
	Technology and Natural sciences between 1871 and 1945
	10.1 From the Establishment of the German Empire to the Global Catastrophes
	10.2 Saint George Hunts Down the Dragon: Cantor and Set Theory
		10.2.1 Cantor’s Construction of the Real Numbers
		10.2.2 Cantor and Dedekind
		10.2.3 The Transfinite Numbers
		10.2.4 The Reception of Set Theory
		10.2.5 Cantor and the Infinitely Small
	10.3 Searching for the True Continuum: Paul Du Bois-Reymond
	10.4 Searching for the True Continuum: The Intuitionists
	10.5 Vector Analysis
	10.6 Differential Geometry
	10.7 Ordinary Differential Equantions
	10.8 Partial Differential Equations
	10.9 Analysis Becomes Even More Powerful: Functional Analysis
		10.9.1 Basic Notions of Functional Analysis
		10.9.2 A Historical Outline of Functional Analysis
		Development of Analysis in the 19th and 20th Century
11 Coming to full circle: Infinitesimals in Nonstandard Analysis
	General History From the End of WW II to Today
	Developments in Natural Sciences and Technology
	11.1 From the Cold War up to today
		11.1.1 Computer and Sputnik Shock
		11.1.2 The Cold War and its End
		11.1.3 Bologna Reform, Crises, Terrorism
	11.2 The Rebirth of the Infinitely Small Numbers
		11.2.1 Mathematics of Infinitesimals in the ‘Black Book’
		11.2.2 The Nonstandard Analysis of Laugwitz and Schmieden
	11.3 Robinson and the Nonstandard Analysis
	11.4 Nonstandard Analysis by Axiomatisation: The Nelson Approach
	11.5 Nonstandard Analysis and Smooth Worlds
		Development of Nonstandard Analysis
12 Analysis at Every Turn
References
List of Figures
Index of persons
Subject index




نظرات کاربران