دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: M.D. Zahn, Evan M. (editor) سری: ISBN (شابک) : 032365391X, 9780323653916 ناشر: Elsevier Science Health Science سال نشر: 2019 تعداد صفحات: 204 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 مگابایت
در صورت تبدیل فایل کتاب 3-Dimensional Modeling in Cardiovascular Disease به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدل سازی سه بعدی در بیماری های قلبی عروقی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نوشته شده توسط پزشکان و جراحان، متخصصان تصویربرداری، و مهندسان فناوری پزشکی، و ویرایش شده توسط دکتر ایوان ام. زان از مؤسسه مشهور قلب Cedars-Sinai، این حجم مختصر و متمرکز، اطلاعات ضروری را در این جدید و هیجان انگیز پوشش می دهد. رشته. تحت پوشش همه چیز از تکامل مدل سازی سه بعدی در بیماری های قلبی تا نقش های مختلف مدل سازی سه بعدی در قلب و هولوگرافی قلب و پرینت زیستی سه بعدی، مدل سازی سه بعدی در بیماری های قلبی عروقی یک منبع یک مرحله ای برای پزشکان است. متخصصان قلب، رادیولوژیست ها و مهندسانی که با بیماران کار می کنند، از ارائه دهندگان مراقبت حمایت می کنند و تحقیقات انجام می دهند.
Written by physicians and surgeons, imaging specialists, and medical technology engineers, and edited by Dr. Evan M. Zahn of the renowned Cedars-Sinai Heart Institute, this concise, focused volume covers must-know information in this new and exciting field. Covering everything from the evolution of 3D modeling in cardiac disease to the various roles of 3D modeling in cardiology to cardiac holography and 3D bioprinting, 3-Dimensional Modeling in Cardiovascular Disease is a one-stop resource for physicians, cardiologists, radiologists, and engineers who work with patients, support care providers, and perform research.
Cover 3-Dimensional Modeling in Cardiovascular Disease Copyright List of Contributors Foreword Introduction References 1. The Evolution of 3D Modeling in Cardiac Disease Introduction 3D Anatomical Models (Fig. 1.1) Statistical Shape Models Extended Reality Models Computational Mechanistic Models (Fig. 1.2) Finite Element Modeling Computational Fluid Dynamics Fluid–Structure Interaction Physical Models—3D Printing (Fig. 1.3) Discussion References 2. The Technical Basics of Cardiac 3D Printing Introduction Additive Manufacturing Technologies for Producing 3D-Printed Models Model Slicing Printing Technologies Vat Photopolymerization Process Equipment Postprocessing Materials Print time and resolution Material Jetting Process Equipment Postprocessing Materials Print time and resolution Material Extrusion Process Equipment Postprocessing Materials Print time and resolution Binder Jetting Process Equipment Postprocessing Materials Print time and resolution Powder Bed Fusion Process Equipment Postprocessing Materials Print time and resolution Generating 3D-printable models from a patient's DICOM images The process of designing clinical 3D-printed models Segmentation and STL Generation STL postprocessing for model and device design Establishing the quality of medical 3D-printed models Equipment QC Interpretive QA Summary References 3. From Multiplanar Imaging to Physical 3D Models: 3D Printing as an Adjunct to Congenital Heart Surgery Imaging Postprocessing 3D Printing Utilization of 3D Modeling and Printing in Surgical Management of Congenital Heart Diseases Morphology Teaching of Congenital Heart Diseases Using 3D Modeling and Printing Hands-On Surgical Training of Congenital Heart Surgery with 3D Print Models Current Limitations and Future Directions References 4. 3D Modeling as an Adjunct to Complex Congenital Catheter Interventions Introduction 3D Modeling in Congenital Heart Disease 3D Modeling in Congenital Catheterization Complex Congenital Interventions Preprocedure Patient and Parental Communication and Informed Consent The Future of 3D Modeling and Congenital Interventions Computer generated 3D modeling and finite element analysis Bespoke Device Creation Stent Printing Device Creation in Under-resourced Countries Regulation Conclusion References 5. Instructional Case Examples Utilizing Three-Dimensional Modeling in Congenital Heart Disease Introduction Dynamic 3D Modeling with Cardiac MRI in Infants Case 1 3D Rotational Angiography Case 2 3D Overlay Case 3 3D Modeling and Rapid Prototyping Case 4 Case 5 Case 6 Case 7 Conclusion References 6. Is There Role for 3D Modeling in Planning Acquired Heart Disease Surgery? Valves Aortic Valve Mitral Valve Pulmonary and Tricuspid Valves Left Atrial Appendage Aorta and Great Arteries Hypertrophic Obstructive Cardiomyopathy Cardiac Tumors Cardiac Aneurysms Other Cardiac Surgical Applications Conclusion and Future Outlook References 7. 3D Modeling as a Tool for Structural Heart Interventions Structural Heart Interventions 3D Modeling Techniques for Planning Structural Heart Interventions Digital modeling Computational modeling and simulations 3D-printed modeling for planning structural heart interventions Material selection for 3D printing patient-specific cardiac models Structural Heart Interventions Aortic valve replacement Mitral valve repair Left Atrial (LA) closure Atrial septal defect closure Computational Modeling Applications in Planning Structural Heart Interventions 3D-Printed Modeling for Planning Structural Heart Interventions Challenges and Future Directions in 3D Modeling Structural Heart Interventions References 8. The Role of 3D Modeling in the Treatment of Advanced Heart Failure Background Heart Failure Mechanical Circulatory Support Heart Transplantation 3D Modeling and Its Use in Advance Heart Failure 3D Modeling for Mechanical Circulatory Support Planning Background Methods Recent Findings 3D Modeling for Mechanical Circulatory Support Design Background Methods Recent Findings 3D Modeling for Heart Transplantation Background Methods Recent Findings Conclusion References Further Reading 9. Current Challenges to the Use of 3D Modeling as a Standard Clinical Tool Introduction Image Acquisition Use of Sedation Use of Contrast Image Artifact Use of Previously Acquired Images Resolution of Imaging Modalities CT 3D echocardiography MRI Virtual Reconstruction Additive Manufacturing Accuracy of Models Material and Machine Limitations Technological Opportunity Logistics of Running a 3D Printing/Additive Manufacturing Lab Cost Time Virtual and Augmented Reality Conclusion References 10. Does 3D Modeling Alter Clinical Outcomes? What Are the Data? Introduction What Is the Level of Evidence of the Clinical Study? Does the Article Evaluate the Impact on Preoperative Management Decision? Does the Article Assess the Reduction in Operating Time? Does the Article Assess Surgical Morbidity and Mortality? Does the Article Assess Health Professional's Perception? Does the Article Assess Patient and Parent's Perception? Does the Article Adequately Discuss the Cost of the 3D Printing Process? Does the Article Compare 3D Printing with Existing Alternatives? Conclusion Abbreviations References 11. 3D Modeling as a Medical Education Resource, Simulation, and Communication Tool Introduction 3D Models as a Communication Tool 3D Models as an Educational Resource Impact on Cardiovascular Disease Education Impact on Collaboration Between Academic Institutions Increase Access to Pathology Specimens Improved Visualization of Critical Features 3D Models for Simulation Procedural Simulation Care Delivery Simulation Conclusion References 12. Computational Modeling and Personalized Surgery Introduction Electric Analogy of Blood Flow Applications One-Dimensional Blood Flow Modeling Applications Three-Dimensional Flow Modeling Patient-Specific Model Construction Governing Equations and Boundary Conditions 0D–3D Coupling Data Assimilation and Uncertainty Quantification Fluid–Structure Interaction Applications Case study: coronary bypass graft surgery Case study: surgerical design for the Fontan procedure Case study: modeling surgical repair for peripheral pulmonary stenosis Challenges and Future Perspective References 13. 3D Bioprinting: What Does the Future Hold? Introduction Development of 3D Bioprinting of Cardiac Tissue: Current Approaches Early Studies with Cardiac Progenitor Cells Experimentation with Bioinks Introduction of Vasculature Spatially Patterning Tissues Methods of 3D Bioprinting Cardiac Tissue: A Comparison Microextrusion-Based Printing Laser Printing Vacuum-Suction Printing Omnidirectional Printing The Future of 3D Bioprinting of Cardiac Tissue Bioprinting A Whole Heart Resolution Speed Complexity and scaling up Biomaterial compatibility Cost Aortic Heart Valve Heart Development Ethics of Building a Heart Access for patients Safety Human enhancement Conclusion References Index A B C D E F H I K L M N O P R S T U V W