دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: CFA Institute
سری:
ISBN (شابک) : 9781950157426, 9781950157662
ناشر: CFA Institute
سال نشر: 2021
تعداد صفحات: 3633
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 130 Mb
در صورت تبدیل فایل کتاب 2022 CFA Program Curriculum Level I Box Set (CFA Institute) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مجموعه جعبه های سطح اول برنامه درسی برنامه CFA 2022 (موسسه CFA) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
How to Use the CFA Program Curriculum vii Background on the CBOK vii Organization of the Curriculum viii Features of the Curriculum viii Designing Your Personal Study Program ix CFA Institute Learning Ecosystem (LES) x Prep Providers xi Feedback xii Quantitative Methods Study Session 1 Quantitative Methods (1) 3 Reading 1 The Time Value of Money 5 Introduction 5 Interest Rates 6 Future Value of a Single Cash Flow (Lump Sum) 8 Non-Annual Compounding (Future Value) 13 Continuous Compounding, Stated and Effective Rates 15 Stated and Effective Rates 16 Future Value of a Series of Cash Flows, Future Value Annuities 17 Equal Cash Flows—Ordinary Annuity 17 Unequal Cash Flows 19 Present Value of a Single Cash Flow (Lump Sum) 20 Non-Annual Compounding (Present Value) 22 Present Value of a Series of Equal Cash Flows (Annuities) and Unequal Cash Flows 23 The Present Value of a Series of Equal Cash Flows 24 The Present Value of a Series of Unequal Cash Flows 28 Present Value of a Perpetuity and Present Values Indexed at Times other than t=0 29 Present Values Indexed at Times Other than t = 0 30 Solving for Interest Rates, Growth Rates, and Number of Periods 32 Solving for Interest Rates and Growth Rates 32 Solving for the Number of Periods 35 Solving for Size of Annuity Payments (Combining Future Value and Present Value Annuities) 36 Present Value and Future Value Equivalence, Additivity Principle 39 The Cash Flow Additivity Principle 41 Summary 42 Practice Problems 44 Solutions 49 © CFA Institute. For candidate use only. Not for distribution. ii Contents indicates an optional segment Reading 2 Organizing, Visualizing, and Describing Data 63 Introduction 64 Data Types 64 Numerical versus Categorical Data 65 Cross-Sectional versus Time-Series versus Panel Data 67 Structured versus Unstructured Data 68 Data Summarization 72 Organizing Data for Quantitative Analysis 72 Summarizing Data Using Frequency Distributions 75 Summarizing Data Using a Contingency Table 81 Data Visualization 86 Histogram and Frequency Polygon 86 Bar Chart 88 Tree-Map 91 Word Cloud 92 Line Chart 93 Scatter Plot 95 Heat Map 99 Guide to Selecting among Visualization Types 100 Measures of Central Tendency 103 The Arithmetic Mean 103 The Median 107 The Mode 109 Other Concepts of Mean 110 Quantiles 120 Quartiles, Quintiles, Deciles, and Percentiles 120 Quantiles in Investment Practice 126 Measures of Dispersion 126 The Range 126 The Mean Absolute Deviation 127 Sample Variance and Sample Standard Deviation 128 Downside Deviation and Coefficient of Variation 131 Coefficient of Variation 135 The Shape of the Distributions 136 The Shape of the Distributions: Kurtosis 139 Correlation between Two Variables 142 Properties of Correlation 143 Limitations of Correlation Analysis 146 Summary 149 Practice Problems 154 Solutions 166 Reading 3 Probability Concepts 175 Introduction, Probability Concepts, and Odds Ratios 176 Probability, Expected Value, and Variance 176 © CFA Institute. For candidate use only. Not for distribution. indicates an optional segment Contents iii Conditional and Joint Probability 181 Expected Value (Mean), Variance, and Conditional Measures of Expected Value and Variance 192 Expected Value, Variance, Standard Deviation, Covariances, and Correlations of Portfolio Returns 199 Covariance Given a Joint Probability Function 205 Bayes' Formula 208 Bayes’ Formula 208 Principles of Counting 214 Summary 220 Practice Problems 224 Solutions 230 Study Session 2 Quantitative Methods (2) 237 Reading 4 Common Probability Distributions 239 Introduction and Discrete Random Variables 240 Discrete Random Variables 241 Discrete and Continuous Uniform Distribution 244 Continuous Uniform Distribution 246 Binomial Distribution 250 Normal Distribution 257 The Normal Distribution 257 Probabilities Using the Normal Distribution 261 Standardizing a Random Variable 263 Probabilities Using the Standard Normal Distribution 263 Applications of the Normal Distribution 265 Lognormal Distribution and Continuous Compounding 269 The Lognormal Distribution 269 Continuously Compounded Rates of Return 272 Student’s t-, Chi-Square, and F-Distributions 275 Student’s t-Distribution 275 Chi-Square and F-Distribution 277 Monte Carlo Simulation 282 Summary 288 Practice Problems 292 Solutions 299 Reading 5 Sampling and Estimation 305 Introduction 306 Sampling Methods 306 Simple Random Sampling 307 Stratified Random Sampling 308 Cluster Sampling 309 Non-Probability Sampling 310 Sampling from Different Distributions 315 Distribution of the Sample Mean and the Central Limit Theorem 316 The Central Limit Theorem 317 Standard Error of the Sample Mean 319 © CFA Institute. For candidate use only. Not for distribution. iv Contents indicates an optional segment Point Estimates of the Population Mean 322 Point Estimators 322 Confidence Intervals for the Population Mean and Selection of Sample Size 326 Selection of Sample Size 332 Resampling 334 Data Snooping Bias, Sample Selection Bias, Look-Ahead Bias, and Time-Period Bias 338 Data Snooping Bias 338 Sample Selection Bias 340 Look-Ahead Bias 342 Time-Period Bias 342 Summary 344 Practice Problems 347 Solutions 351 Reading 6 Hypothesis Testing 357 Introduction 358 Why Hypothesis Testing? 358 Implications from a Sampling Distribution 359 The Process of Hypothesis Testing 360 Stating the Hypotheses 361 Two-Sided vs. One-Sided Hypotheses 361 Selecting the Appropriate Hypotheses 362 Identify the Appropriate Test Statistic 363 Test Statistics 363 Identifying the Distribution of the Test Statistic 364 Specify the Level of Significance 364 State the Decision Rule 366 Determining Critical Values 367 Decision Rules and Confidence Intervals 368 Collect the Data and Calculate the Test Statistic 369 Make a Decision 370 Make a Statistical Decision 370 Make an Economic Decision 370 Statistically Significant but Not Economically Significant? 370 The Role of p-Values 371 Multiple Tests and Interpreting Significance 374 Tests Concerning a Single Mean 377 Test Concerning Differences between Means with Independent Samples 381 Test Concerning Differences between Means with Dependent Samples 384 Testing Concerning Tests of Variances (Chi-Square Test) 388 Tests of a Single Variance 388 Test Concerning the Equality of Two Variances (F-Test) 391 Parametric vs. Nonparametric Tests 396 Uses of Nonparametric Tests 397 Nonparametric Inference: Summary 397 Tests Concerning Correlation 398 Parametric Test of a Correlation 399 © CFA Institute. For candidate use only. Not for distribution. indicates an optional segment Contents v Tests Concerning Correlation: The Spearman Rank Correlation Coefficient 401 Test of Independence Using Contingency Table Data 404 Summary 409 Practice Problems 412 Solutions 422 Reading 7 Introduction to Linear Regression 431 Simple Linear Regression 431 Estimating the Parameters of a Simple Linear Regression 434 The Basics of Simple Linear Regression 434 Estimating the Regression Line 435 Interpreting the Regression Coefficients 438 Cross-Sectional vs. Time-Series Regressions 440 Assumptions of the Simple Linear Regression Model 443 Assumption 1: Linearity 443 Assumption 2: Homoskedasticity 445 Assumption 3: Independence 447 Assumption 4: Normality 448 Analysis of Variance 450 Breaking down the Sum of Squares Total into Its Components 450 Measures of Goodness of Fit 451 ANOVA and Standard Error of Estimate in Simple Linear Regression 453 Hypothesis Testing of Linear Regression Coefficients 455 Hypothesis Tests of the Slope Coefficient 455 Hypothesis Tests of the Intercept 459 Hypothesis Tests of Slope When Independent Variable Is an Indicator Variable 459 Test of Hypotheses: Level of Significance and p-Values 461 Prediction Using Simple Linear Regression and Prediction Intervals 463 Functional Forms for Simple Linear Regression 467 The Log-Lin Model 468 The Lin-Log Model 469 The Log-Log Model 470 Selecting the Correct Functional Form 472 Summary 474 Practice Problems 477 Solutions 490 Appendices 495 Glossary