دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Husn Ara
سری:
ناشر:
سال نشر: 2024
تعداد صفحات: 461
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 Mb
در صورت تبدیل فایل کتاب "Python Powerhouse: A Developer's Guide to Efficient Coding": Python + Flask + Docker + TKinter +ML + Deep Learning + NLP به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب "Python Powerhouse: A Developer's Guide to Efficient Coding": Python Flask Docker TKinter ML Deep Learning NLP نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Table of Contents Chapter 1: Introduction to Python Key Features of Python: Common Use Cases for Python: Setting up the Python Environment 1. Install Python: 2. Verify the Installation: 3. Virtual Environments: 4. Installing Packages: 5. Integrated Development Environment (IDE): 6. Code Editor: 7. Running Python Code: Basic Python Syntax and Operations 1. Print Statement: 2. Variables and Data Types: 3. Comments: 4. Indentation: 5. Conditional Statements: 6. Loops: 7. Lists: 8. Dictionaries: 9. Functions: 10. Input from Users: 11. Arithmetic Operations: Core Python Concepts Variables, Data Types, and Operators: Comparison Operators: Logical Operators: Assignment Operators: Identity Operators: Control Flow: Conditional Statements and Loops Control Flow: Loops: For Loop: Range-based for Loop: Nested for Loops: While Loop: Infinite While Loop: While Loop with Else: Nested Loops: Nested While Loops: Use Cases: Functions and Modules in Python Function in Python: Docstring: Parameters: Default Values: Module in Python Creating a Module: Namespace: Standard Modules: Exception Handling in Python Try-Except Block: Multiple Except Blocks: Custom Exceptions: Chapter 2- Data Structures in Python List Indexing: List Slicing: List Methods: List Comprehension: Tuple in Python Tuple Unpacking: Tuple Methods: Advantages of Tuples: When to Use Tuples: Set in Python Creating a Set from a List: Accessing Elements: Set Operations: Set Methods: Dictionaries in Python Applications of Dictionaries: Strings in Python String Methods: String Formatting: Triple-Quoted Strings: Escape Characters: Stacks in Python Queue in Python Trees in Python Graphs in Python Sorting Algorithms Searching Algorithms Chapter 3- Python Standard Library sys Module (System-specific Parameters) datetime Module (Date and Time) math Module (Mathematical Functions) random Module (Random Number Generation) re Module (Regular Expressions) argparse Module (Command-Line Argument Parsing) Chapter- 5 Python GUI Programming Introduction to Tkinter Creating GUI Applications Widgets and Layout Management Layout Management: Event Handling Common Event Types: Event Handling: Chapter -6 Web Development with Python Key Features of Flask: Typical Use Cases for Flask: Setting up a Flask Application Routing and URL Building Templates Creating Templates: Rendering Templates: Template Variables and Control Structures: Template Filters and Functions: Forms and Validation Forms: Validation: Form Handling in Flask: Database Integration (SQLAlchemy) Installation: Define Models: Create Database Tables: Interacting with the Database: Querying Data: Database Migrations: Chapter-7 Data Analysis and Visualization Introduction to Pandas Key Features of Pandas: Key Components of Pandas: Key Data Manipulation Operations: Data Manipulation with Pandas Importing Pandas Library: Chapter 8 Understanding and Using NumPy Arrays Applications of NumPy Arrays: Chapter-9 Python Programming Techniques List Comprehensions in Python Advantages of List Comprehensions: Lambda Functions Map, Filter, and Reduce: Map: Filter: Reduce: Chapter-10 Object-Oriented Programming (OOP) Key Concepts in OOP Classes and Objects: Encapsulation: Inheritance: Polymorphism: Abstraction: Composition: Chapter 11- File Handling Chapter-12 Data Analysis and Visualization Exploratory Data Analysis (EDA): Key Objectives of Exploratory Data Analysis: Benefits of Exploratory Data Analysis: Feature Engineering Insights Tools for EDA Types of EDA Plots using Matplotlib Chapter-13 Introduction to Machine Learning Overview of Machine Learning and Its Types 1. What is Machine Learning? 2. Types of Machine Learning: Supervised and Unsupervised Learning Supervised Learning: Regression: Simple Linear Regression: Multiple Linear Regression: Polynomial Regression: Logistic Regression: Ridge Regression and Lasso Regression: Classification: Types of Classification: Multiclassification: Characteristics of Supervised Learning: Unsupervised Learning Clustering: K-Means Clustering: Hierarchical Clustering: Density-Based Clustering (DBSCAN): Gaussian Mixture Models (GMM): Self-Organizing Maps (SOM): Dimensionality Reduction Principal Component Analysis (PCA): t-Distributed Stochastic Neighbor Embedding (t-SNE): Linear Discriminant Analysis (LDA): Autoencoders: Characteristics of Unsupervised Learning: Basics of Feature Engineering and Feature Selection Feature Engineering: Feature Selection: Scikit-Learn for Machine Learning Introduction to Scikit-Learn Library Building and Evaluating Machine Learning Models Chapter-14 Natural Language Processing (NLP) Introduction to NLP Text Preprocessing Tokenization: Sentiment Analysis Supervised Learning Approach: Lexicon-Based Approach: Deep Learning Approach: Named Entity Recognition (NER) Rule-Based Approach: Deep Learning Approach: Topic Modeling Latent Dirichlet Allocation (LDA): Steps in Topic Modeling with LDA: Libraries for NLP in Python: Common NLP Tasks and Techniques: Tokenization: Part-of-Speech (POS) Tagging: Named Entity Recognition (NER): Sentiment Analysis: Advanced NLP Techniques Tools for NLP Datasets for NLP Evaluation Metrics for NLP Challenges in NLP Chapter-15 Deep Learning Neural Networks Building Neural Networks with TensorFlow/Keras Convolutional Neural Networks (CNNs) Key Concepts: Recurrent Neural Networks (RNNs) Key Concepts: Transfer Learning Key Concepts: Chapter-16 Web Scraping Introduction to Web Scraping Key Concepts: Scrapy for Advanced Web Scraping Key Concepts: Chapter-17 Deployment and Productionization Packaging Python Applications Key Concepts: Best Practices: Virtual Environments Key Concepts: Best Practices: Docker Containers Key Concepts: Best Practices: Deployment on Cloud Platforms (Heroku, AWS, Google Cloud) Heroku: AWS (Amazon Web Services): Best Practices: Chapter-18 Best Practices and Advanced Topics Code Optimization Unit Testing Debugging Techniques Code Documentation Concurrency and Parallelism