ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب "Python Powerhouse: A Developer's Guide to Efficient Coding": Python + Flask + Docker + TKinter +ML + Deep Learning + NLP

دانلود کتاب "Python Powerhouse: A Developer's Guide to Efficient Coding": Python Flask Docker TKinter ML Deep Learning NLP

"Python Powerhouse: A Developer's Guide to Efficient Coding": Python + Flask + Docker + TKinter +ML + Deep Learning + NLP

مشخصات کتاب

"Python Powerhouse: A Developer's Guide to Efficient Coding": Python + Flask + Docker + TKinter +ML + Deep Learning + NLP

ویرایش:  
نویسندگان:   
سری:  
 
ناشر:  
سال نشر: 2024 
تعداد صفحات: 461 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 2 Mb 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب "Python Powerhouse: A Developer's Guide to Efficient Coding": Python + Flask + Docker + TKinter +ML + Deep Learning + NLP به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب "Python Powerhouse: A Developer's Guide to Efficient Coding": Python Flask Docker TKinter ML Deep Learning NLP نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Table of Contents
Chapter 1: Introduction to Python
Key Features of Python:
Common Use Cases for Python:
Setting up the Python Environment
1. Install Python:
2. Verify the Installation:
3. Virtual Environments:
4. Installing Packages:
5. Integrated Development Environment (IDE):
6. Code Editor:
7. Running Python Code:
Basic Python Syntax and Operations
1. Print Statement:
2. Variables and Data Types:
3. Comments:
4. Indentation:
5. Conditional Statements:
6. Loops:
7. Lists:
8. Dictionaries:
9. Functions:
10. Input from Users:
11. Arithmetic Operations:
Core Python Concepts
Variables, Data Types, and Operators:
Comparison Operators:
Logical Operators:
Assignment Operators:
Identity Operators:
Control Flow: Conditional Statements and Loops
Control Flow:
Loops:
For Loop:
Range-based for Loop:
Nested for Loops:
While Loop:
Infinite While Loop:
While Loop with Else:
Nested Loops:
Nested While Loops:
Use Cases:
Functions and Modules in Python
Function in Python:
Docstring:
Parameters:
Default Values:
Module in Python
Creating a Module:
Namespace:
Standard Modules:
Exception Handling in Python
Try-Except Block:
Multiple Except Blocks:
Custom Exceptions:
Chapter 2- Data Structures in Python
List Indexing:
List Slicing:
List Methods:
List Comprehension:
Tuple in Python
Tuple Unpacking:
Tuple Methods:
Advantages of Tuples:
When to Use Tuples:
Set in Python
Creating a Set from a List:
Accessing Elements:
Set Operations:
Set Methods:
Dictionaries in Python
Applications of Dictionaries:
Strings in Python
String Methods:
String Formatting:
Triple-Quoted Strings:
Escape Characters:
Stacks in Python
Queue in Python
Trees in Python
Graphs in Python
Sorting Algorithms
Searching Algorithms
Chapter 3- Python Standard Library
sys Module (System-specific Parameters)
datetime Module (Date and Time)
math Module (Mathematical Functions)
random Module (Random Number Generation)
re Module (Regular Expressions)
argparse Module (Command-Line Argument Parsing)
Chapter- 5 Python GUI Programming
Introduction to Tkinter
Creating GUI Applications
Widgets and Layout Management
Layout Management:
Event Handling
Common Event Types:
Event Handling:
Chapter -6 Web Development with Python
Key Features of Flask:
Typical Use Cases for Flask:
Setting up a Flask Application
Routing and URL Building
Templates
Creating Templates:
Rendering Templates:
Template Variables and Control Structures:
Template Filters and Functions:
Forms and Validation
Forms:
Validation:
Form Handling in Flask:
Database Integration (SQLAlchemy)
Installation:
Define Models:
Create Database Tables:
Interacting with the Database:
Querying Data:
Database Migrations:
Chapter-7 Data Analysis and Visualization
Introduction to Pandas
Key Features of Pandas:
Key Components of Pandas:
Key Data Manipulation Operations:
Data Manipulation with Pandas
Importing Pandas Library:
Chapter 8 Understanding and Using NumPy Arrays
Applications of NumPy Arrays:
Chapter-9 Python Programming Techniques
List Comprehensions in Python
Advantages of List Comprehensions:
Lambda Functions
Map, Filter, and Reduce:
Map:
Filter:
Reduce:
Chapter-10 Object-Oriented Programming (OOP)
Key Concepts in OOP
Classes and Objects:
Encapsulation:
Inheritance:
Polymorphism:
Abstraction:
Composition:
Chapter 11- File Handling
Chapter-12 Data Analysis and Visualization
Exploratory Data Analysis (EDA):
Key Objectives of Exploratory Data Analysis:
Benefits of Exploratory Data Analysis:
Feature Engineering Insights
Tools for EDA
Types of EDA Plots using Matplotlib
Chapter-13 Introduction to Machine Learning
Overview of Machine Learning and Its Types
1. What is Machine Learning?
2. Types of Machine Learning:
Supervised and Unsupervised Learning
Supervised Learning:
Regression:
Simple Linear Regression:
Multiple Linear Regression:
Polynomial Regression:
Logistic Regression:
Ridge Regression and Lasso Regression:
Classification:
Types of Classification:
Multiclassification:
Characteristics of Supervised Learning:
Unsupervised Learning
Clustering:
K-Means Clustering:
Hierarchical Clustering:
Density-Based Clustering (DBSCAN):
Gaussian Mixture Models (GMM):
Self-Organizing Maps (SOM):
Dimensionality Reduction
Principal Component Analysis (PCA):
t-Distributed Stochastic Neighbor Embedding (t-SNE):
Linear Discriminant Analysis (LDA):
Autoencoders:
Characteristics of Unsupervised Learning:
Basics of Feature Engineering and Feature Selection
Feature Engineering:
Feature Selection:
Scikit-Learn for Machine Learning
Introduction to Scikit-Learn Library
Building and Evaluating Machine Learning Models
Chapter-14 Natural Language Processing (NLP)
Introduction to NLP
Text Preprocessing
Tokenization:
Sentiment Analysis
Supervised Learning Approach:
Lexicon-Based Approach:
Deep Learning Approach:
Named Entity Recognition (NER)
Rule-Based Approach:
Deep Learning Approach:
Topic Modeling
Latent Dirichlet Allocation (LDA):
Steps in Topic Modeling with LDA:
Libraries for NLP in Python:
Common NLP Tasks and Techniques:
Tokenization:
Part-of-Speech (POS) Tagging:
Named Entity Recognition (NER):
Sentiment Analysis:
Advanced NLP Techniques
Tools for NLP
Datasets for NLP
Evaluation Metrics for NLP
Challenges in NLP
Chapter-15 Deep Learning
Neural Networks
Building Neural Networks with TensorFlow/Keras
Convolutional Neural Networks (CNNs)
Key Concepts:
Recurrent Neural Networks (RNNs)
Key Concepts:
Transfer Learning
Key Concepts:
Chapter-16 Web Scraping
Introduction to Web Scraping
Key Concepts:
Scrapy for Advanced Web Scraping
Key Concepts:
Chapter-17 Deployment and Productionization
Packaging Python Applications
Key Concepts:
Best Practices:
Virtual Environments
Key Concepts:
Best Practices:
Docker Containers
Key Concepts:
Best Practices:
Deployment on Cloud Platforms (Heroku, AWS, Google Cloud)
Heroku:
AWS (Amazon Web Services):
Best Practices:
Chapter-18 Best Practices and Advanced Topics
Code Optimization
Unit Testing
Debugging Techniques
Code Documentation
Concurrency and Parallelism




نظرات کاربران